scholarly journals Influence of Tool Path Strategies and Pocket Geometry on Surface Roughness in Pocket Milling

This paper discusses the effect of tool path strategies and pocket geometry to surface roughness due to pocket milling process. The machining processes have been performed on mould steel DF2 using carbide insert end mill as the cutting tool. The cutting parameters for this experiment were kept constant while the variables were cutting tool, path strategies and pocket geometries at three levels each. The effectiveness of different tool path strategy and different pocket geometry is evaluated in terms of measured surface roughness (Ra) of the workpiece. The grade of a pocket is directly proportional with its surface roughness. The lowest surface roughness measurement was produced by pocket geometry B with parallel spiral cutting tool path strategy.

Author(s):  
Thomas McLeay ◽  
Michael S Turner ◽  
Keith Worden

The most common machining processes of turning, drilling, milling and grinding concern the removal of material from a workpiece using a cutting tool. The performance of machining processes depends on a number of key method parameters, including cutting tool, workpiece material, machine configuration, fixturing, cutting parameters and tool path trajectory. The large number of possible configurations can make it difficult to implement fault detection systems without having to train the system to a particular method or fault type. The research of this article applies a novel method to detect the changing state of a process over time in order to detect faulty machining conditions such as worn tools and cutting depth changes. Unlike studies in the previous literature in this domain, an unsupervised learning method is used, so that the method can be applied in production to unfamiliar processes or fault conditions. In the case presented, novelty detection is applied to a multivariate sensor feature data set obtained from a milling process. Sensor modalities include acoustic emission, vibration and spindle power and time and frequency domain features are employed. The Mahalanobis squared-distance is used to measure discordancy of each new data point, and values that exceed a principled novelty threshold are categorised as fault conditions.


Author(s):  
Yukui Cai ◽  
Zhanqiang Liu ◽  
Zhenyu Shi ◽  
Qinghua Song ◽  
Yi Wan

Cutting tool path has significant effects on the performance of micro nozzles manufactured by micro machining. Different tool paths induced different directions of surface roughness. As for it, the manufacturers need to obtain optimal cutting tool path and cutting parameters. In this article, optimum machining parameters for the fabrication of micro Laval nozzle with two different end milling tool paths are presented. First, surface roughness models for different types of cutting tool paths are proposed. A case of machined nozzle surface is then given to verify the applicability of the developed roughness model. Second, theoretical profile geometries for the Laval nozzle to be manufactured are designed. Third, the influences of surface roughness on the nozzle performance parameters including total pressure, average outlet velocity and thrust are investigated through computational fluid dynamic analysis. Simulated performance parameters are contrasted with their theoretical values. It is found that for different tool paths, the nozzle of axial tool path has larger total pressure and average outlet velocity than that of circular tool path. Moreover, with surface roughness increasing, thrust decreases obviously when surface roughness Rz is larger than 4.8 μm. Micro end milling experiments based on axial tool path are then performed, and the optimum cutting parameters are obtained. Finally, a nozzle was manufactured with the axial tool path as well as the optimized cutting parameters.


2016 ◽  
Vol 836 ◽  
pp. 191-196
Author(s):  
Agus Sujatmiko ◽  
Moh Hartono ◽  
R. Edy Purwanto

Computer Numerical Control (CNC) vertical milling is a cutting tool of a work piece by giving CNC G-code program to the milling machine to give the chisel end mill perpendicular to the surface of the work piece. The distance between overhang tool and holder is usually not standard causing the end mill chisel experience minimum and maximum deflection during the cutting process. This research observed the cutting and measuring the surface roughness of the specimen made of BJ37 mild steel. It is of a square shape with a rectangular cross-section cutting parameters of overhang groove, vibration and feeding from the left, the middle, and the right surface. Measurement was done by testing the surface roughness under the conditions of changing the overhang groove, vibration, and small feeding. The observations result in smaller deflection and angle to obtain Ra = 1.64 μm average minimum level of roughness using 25mm overhang with the same feeding of 0.18mm/rev. Ra = 1.64 μm is classified into Group N7 smooth, compared to the use standard 35mm overhang which obtains Ra = 1.88 μm, Group N7 normal. The minimum level of roughness can be obtained due to the smaller feeding.


CNC Pocket Milling is the commonly employed machining process in molding, aircraft building, and shipbuilding industries. Surface integrity is one of the main quality parameters considered to accept the component. In the present work, an attempt is made to optimize the cutting factors in pocket milling of UNS A96082 using two different tool path strategies to get a better surface finish. Speed, Feed and Step over are considered as influencing parameters in the present study for measuring surface roughness. Taguchi experimental design method is employed to conduct experiments and to optimize the cutting parameters. It is observed that the results obtained from confirmation experiments also show nearer value for predicted surface roughness


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3789
Author(s):  
Michele Lanzetta ◽  
Marco Picchi Picchi Scardaoni ◽  
Armin Gharibi ◽  
Claudia Vivaldi

This paper explores the modeling of incipient cutting by Abaqus, LS-Dyna, and Ansys Finite Element Methods (FEMs), by comparing also experimentally the results on different material classes, including common aluminum and steel alloys and an acetal polymer. The target application is the sustainable manufacturing of gecko adhesives by micromachining a durable mold for injection molding. The challenges posed by the mold shape include undercuts and sharp tips, which can be machined by a special diamond blade, which enters the material, forms a chip, and exits. An analytical model to predict the shape of the incipient chip and of the formed grove as a function of the material properties and of the cutting parameters is provided. The main scientific merit of the current work is to approach theoretically, numerically, and experimentally the very early phase of the cutting tool penetration for new sustainable machining and micro-machining processes.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1783
Author(s):  
Hamza A. Al-Tameemi ◽  
Thamir Al-Dulaimi ◽  
Michael Oluwatobiloba Awe ◽  
Shubham Sharma ◽  
Danil Yurievich Pimenov ◽  
...  

Aluminum alloys are soft and have low melting temperatures; therefore, machining them often results in cut material fusing to the cutting tool due to heat and friction, and thus lowering the hole quality. A good practice is to use coated cutting tools to overcome such issues and maintain good hole quality. Therefore, the current study investigates the effect of cutting parameters (spindle speed and feed rate) and three types of cutting-tool coating (TiN/TiAlN, TiAlN, and TiN) on the surface finish, form, and dimensional tolerances of holes drilled in Al6061-T651 alloy. The study employed statistical design of experiments and ANOVA (analysis of variance) to evaluate the contribution of each of the input parameters on the measured hole-quality outputs (surface-roughness metrics Ra and Rz, hole size, circularity, perpendicularity, and cylindricity). The highest surface roughness occurred when using TiN-coated tools. All holes in this study were oversized regardless of the tool coating or cutting parameters used. TiN tools, which have a lower coating hardness, gave lower hole circularity at the entry and higher cylindricity, while TiN/TiAlN and TiAlN seemed to be more effective in reducing hole particularity when drilling at higher spindle speeds. Finally, optical microscopes revealed that a built-up edge and adhesions were most likely to form on TiN-coated tools due to TiN’s chemical affinity and low oxidation temperature compared to the TiN/TiAlN and TiAlN coatings.


Author(s):  
Eyyup Aras ◽  
Derek Yip-Hoi

Modeling the milling process requires cutter/workpiece engagement (CWE) geometry in order to predict cutting forces. The calculation of these engagements is challenging due to the complicated and changing intersection geometry that occurs between the cutter and the in-process workpiece. This geometry defines the instantaneous intersection boundary between the cutting tool and the in-process workpiece at each location along a tool path. This paper presents components of a robust and efficient geometric modeling methodology for finding CWEs generated during 3-axis machining of surfaces using a range of different types of cutting tool geometries. A mapping technique has been developed that transforms a polyhedral model of the removal volume from Euclidean space to a parametric space defined by location along the tool path, engagement angle and the depth-of-cut. As a result, intersection operations are reduced to first order plane-plane intersections. This approach reduces the complexity of the cutter/workpiece intersections and also eliminates robustness problems found in standard polyhedral modeling and improves accuracy over the Z-buffer technique. The CWEs extracted from this method are used as input to a force prediction model that determines the cutting forces experienced during the milling operation. The reported method has been implemented and tested using a combination of commercial applications. This paper highlights ongoing collaborative research into developing a Virtual Machining System.


Author(s):  
János Farkas ◽  
Etele Csanády ◽  
Levente Csóka

A number of equations are available for predicting the output of machining processes. These equations are most commonly used for the prediction of surface roughness after tooling. Surface roughness can be influenced by many factors, including cutting parameters, tool geometry and environmental factors such as the coolant used. It is difficult to create a universally applicable equation for all machining because of the variations in different materials' behaviours (e.g. metal, wood, plastic, composite, ceramic). There are also many differences between the various types of machining process such as the machining tools, rotational or translational movements, cutting speeds, cutting methods, etc. The large number of parameters required would make such an equation unusable, and difficult to apply quickly. The goal is thus to create a simple formulation with three or four inputs to predict the final surface roughness of the machined part within adequate tolerances. The two main equations used for this purpose are the Bauer and Brammertz formulas, both of which need to be optimised for a given material. In this paper, the turning of thermoplastics was investigated, with the aim of tuning the Bauer formula for use with thermoplastics. Eleven different plastics were used to develop a material-dependent surface roughness equation. Only new tooling inserts were used to eliminate the effects of tool wear.


Sign in / Sign up

Export Citation Format

Share Document