scholarly journals Automated Hyper-parameter Tuning for Machine Learning Models in Machine Health Prognostics

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Wang-Chi Cheung ◽  
Weiwen Zhang ◽  
Yong Liu ◽  
Feng Yang ◽  
Rick-Siow-Mong Goh

Recent studies have revealed the success of data-driven machine health monitoring, which motivates the use of machine learning models in machine health prognostic tasks. While the machine learning approach to health monitoring is gaining importance, the construction of machine learning models is often impeded by the difficulty in choosing the underlying hyper-parameter configuration (HP-config), which governs the construction of the machine learning model. While an effective choice of HP-config can be achieved with human effort, such an effort is often time consuming and requires domain knowledge. In this paper, we consider the use of Bayesian optimization algorithms, which automate an effective choice of HP-config by solving the associated hyperparameter optimization problem. Numerical experiments on the data from PHM 2016 Data Challenge demonstrate the salience of the proposed automatic framework, and exhibit improvement over default HP-configs in standard machine learning packages or chosen by a human agent.

2021 ◽  
Vol 23 (2) ◽  
pp. 359-370
Author(s):  
Michał Matuszczak ◽  
Mateusz Żbikowski ◽  
Andrzej Teodorczyk

The article proposes an approach based on deep and machine learning models to predict a component failure as an enhancement of condition based maintenance scheme of a turbofan engine and reviews currently used prognostics approaches in the aviation industry. Component degradation scale representing its life consumption is proposed and such collected condition data are combined with engines sensors and environmental data. With use of data manipulation techniques, a framework for models training is created and models' hyperparameters obtained through Bayesian optimization. Models predict the continuous variable representing condition based on the input. Best performed model is identified by detemining its score on the holdout set. Deep learning models achieved 0.71 MSE score (ensemble meta-model of neural networks) and outperformed significantly machine learning models with their best score at 1.75. The deep learning models shown their feasibility to predict the component condition within less than 1 unit of the error in the rank scale.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1932
Author(s):  
Ramyar Saeedi ◽  
Keyvan Sasani ◽  
Assefaw H. Gebremedhin

Mobile health monitoring plays a central role in the future of cyber physical systems (CPS) for healthcare applications. Such monitoring systems need to process user data accurately. Unlike in other human-centered CPS, in healthcare CPS, the user functions in multiple roles all at the same time: as an operator, an actuator, the physical environment and, most importantly, the target that needs to be monitored in the process. Therefore, mobile health CPS devices face highly dynamic settings generally, and accuracy of the machine learning models the devices employ may drop dramatically every time a change in setting happens. Novel learning architecture that specifically address challenges associated with dynamic environments are therefore needed. Using active learning and transfer learning as organizing principles, we propose a collaborative multiple-expert architecture and accompanying algorithms for the design of machine learning models that autonomously adapt to a new configuration, context, or user need. Specifically, our architecture and its constituent algorithms are designed to manage heterogeneous knowledge sources or experts with varying levels of confidence and type while minimizing adaptation cost. Additionally, our framework incorporates a mechanism for collaboration among experts to enrich their knowledge, which in turn decreases both cost and uncertainty of data labeling in future steps. We evaluate the efficacy of the architecture using two publicly available human activity datasets. We attain activity recognition accuracy of over 85 % (for the first dataset) and 92 % (for the second dataset) by labeling only 15 % of unlabeled data.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012143
Author(s):  
Sorana Ozaki ◽  
Ryozo Ooka ◽  
Shintaro Ikeda

Abstract The operational energy of buildings is making up one of the highest proportions of life-cycle carbon emissions. A more efficient operation of facilities would result in significant energy savings but necessitates computational models to predict a building’s future energy demands with high precision. To this end, various machine learning models have been proposed in recent years. These models’ prediction accuracies, however, strongly depend on their internal structure and hyperparameters. The time demand and expertise required for their finetuning call for a more efficient solution. In the context of a case study, this paper describes the relationship between a machine learning model’s prediction accuracy and its hyperparameters. Based on time-stamped recordings of outdoor temperatures and electricity demands of a hospital in Japan, recorded every 30 minutes for more than four years, using a deep neural network (DNN) ensemble model, electricity demands were predicted for sixty time steps to follow. Specifically, we used automatic hyperparameter tuning methods, such as grid search, random search, and Bayesian optimization. A single time step ahead, all tuning methods reduced the RSME to less than 50%, compared to non-optimized tuning. The results attest to machine learning models’ reliance on hyperparameters and the effectiveness of their automatic tuning.


Author(s):  
Maxat Kulmanov ◽  
Fatima Zohra Smaili ◽  
Xin Gao ◽  
Robert Hoehndorf

Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge, and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in biomedical ontologies, and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.Key pointsOntologies provide background knowledge that can be exploited in machine learning models.Ontology embeddings are structure-preserving maps from ontologies into vector spaces and provide an important method for utilizing ontologies in machine learning. Embeddings can preserve different structures in ontologies, including their graph structures, syntactic regularities, or their model-theoretic semantics.Axioms in ontologies, in particular those involving negation, can be used as constraints in optimization and machine learning to reduce the search space.


2019 ◽  
Author(s):  
Pascal Friederich ◽  
Gabriel dos Passos Gomes ◽  
Riccardo De Bin ◽  
Alan Aspuru-Guzik ◽  
David Balcells

Machine learning models, including neural networks, Bayesian optimization, gradient boosting and Gaussian processes, were trained with DFT data for the accurate, affordable and explainable prediction of hydrogen activation barriers in the chemical space surrounding Vaska's complex.


Author(s):  
Maxat Kulmanov ◽  
Fatima Zohra Smaili ◽  
Xin Gao ◽  
Robert Hoehndorf

Abstract Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.


2021 ◽  
Vol 7 ◽  
Author(s):  
Qin-Yu Zhao ◽  
Le-Ping Liu ◽  
Jing-Chao Luo ◽  
Yan-Wei Luo ◽  
Huan Wang ◽  
...  

Background: Sepsis-induced coagulopathy (SIC) denotes an increased mortality rate and poorer prognosis in septic patients.Objectives: Our study aimed to develop and validate machine-learning models to dynamically predict the risk of SIC in critically ill patients with sepsis.Methods: Machine-learning models were developed and validated based on two public databases named Medical Information Mart for Intensive Care (MIMIC)-IV and the eICU Collaborative Research Database (eICU-CRD). Dynamic prediction of SIC involved an evaluation of the risk of SIC each day after the diagnosis of sepsis using 15 predictive models. The best model was selected based on its accuracy and area under the receiver operating characteristic curve (AUC), followed by fine-grained hyperparameter adjustment using the Bayesian Optimization Algorithm. A compact model was developed, based on 15 features selected according to their importance and clinical availability. These two models were compared with Logistic Regression and SIC scores in terms of SIC prediction.Results: Of 11,362 patients in MIMIC-IV included in the final cohort, a total of 6,744 (59%) patients developed SIC during sepsis. The model named Categorical Boosting (CatBoost) had the greatest AUC in our study (0.869; 95% CI: 0.850–0.886). Coagulation profile and renal function indicators were the most important features for predicting SIC. A compact model was developed with an AUC of 0.854 (95% CI: 0.832–0.872), while the AUCs of Logistic Regression and SIC scores were 0.746 (95% CI: 0.735–0.755) and 0.709 (95% CI: 0.687–0.733), respectively. A cohort of 35,252 septic patients in eICU-CRD was analyzed. The AUCs of the full and the compact models in the external validation were 0.842 (95% CI: 0.837–0.846) and 0.803 (95% CI: 0.798–0.809), respectively, which were still larger than those of Logistic Regression (0.660; 95% CI: 0.653–0.667) and SIC scores (0.752; 95% CI: 0.747–0.757). Prediction results were illustrated by SHapley Additive exPlanations (SHAP) values, which made our models clinically interpretable.Conclusions: We developed two models which were able to dynamically predict the risk of SIC in septic patients better than conventional Logistic Regression and SIC scores.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Van-Hai Nguyen ◽  
Tien-Thinh Le ◽  
Hoanh-Son Truong ◽  
Minh Vuong Le ◽  
Van-Luc Ngo ◽  
...  

This paper deals with the prediction of surface roughness in manufacturing polycarbonate (PC) by applying Bayesian optimization for machine learning models. The input variables of ultraprecision turning—namely, feed rate, depth of cut, spindle speed, and vibration of the X-, Y-, and Z-axis—are the main factors affecting surface quality. In this research, six machine learning- (ML-) based models—artificial neural network (ANN), Cat Boost Regression (CAT), Support Vector Machine (SVR), Gradient Boosting Regression (GBR), Decision Tree Regression (DTR), and Extreme Gradient Boosting Regression (XGB)—were applied to predict the surface roughness (Ra). The predictive performance of the baseline models was quantitatively assessed through error metrics: root means square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). The overall results indicate that the XGB and CAT models predict Ra with the greatest accuracy. In improving baseline models such as XGB and CAT, the Bayesian optimization (BO) is next used to determine their best hyperparameters, and the results indicate that XGB is the best model according to the evaluation metrics. Results have shown that the performance of the models has been improved significantly with BO. For example, the values of RMSE and MAE of XGB have decreased from 0.0076 to 0.0047 and from 0.0063 to 0.0027, respectively, for the training dataset. Using the testing dataset, the values of RMSE and MAE of XGB have decreased from 0.4033 to 0.2512 and from 0.2845 to 0.2225, respectively. Moreover, the vibrations of the X, Y, and Z axes and feed rate are the most significant feature in predicting the results, which is in high accordance with the literature. We find that, in a specified value domain, the vibration of the axes has a greater influence on the surface quality than does the cutting condition.


Author(s):  
Or Biran ◽  
Kathleen McKeown

Human decision makers in many domains can make use of predictions made by machine learning models in their decision making process, but the usability of these predictions is limited if the human is unable to justify his or her trust in the prediction. We propose a novel approach to producing justifications that is geared towards users without machine learning expertise, focusing on domain knowledge and on human reasoning, and utilizing natural language generation. Through a task-based experiment, we show that our approach significantly helps humans to correctly decide whether or not predictions are accurate, and significantly increases their satisfaction with the justification.


Sign in / Sign up

Export Citation Format

Share Document