scholarly journals Fault Detection and Isolation for Brake Rotor Thickness Variation

2020 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Xinyu Du ◽  
Lichao Mai ◽  
Hamed Kazemi ◽  
Hossein Sadjadi

Brake rotors are critical parts of the disc braking system for modern vehicles. One common failure for brake rotors is the thickness variation, which may result in unpleasant brake pulsation, vehicle vibration during braking, or eventually lead to the malfunction of the braking system. In order to improve customer satisfaction, vehicle serviceability and availability, it is necessary to develop an onboard fault detection and isolation solution. In our previous work, the vibration features of master cylinder pressure, vehicle longitudinal acceleration and wheel speed were identified as fault signatures. Based on these fault signatures, a vibration- based fault detection and isolation algorithm is developed in this work. The difference of frequency response between the braking period and the normal driving period (non-braking) is employed to improve the algorithm robustness. The experiment results demonstrate the proposed algorithm can robustly diagnose the thickness variation fault and isolate the fault to each vehicle corner.

Author(s):  
Lu Xiong ◽  
Wei Han ◽  
Zhuoping Yu ◽  
Jian Lin ◽  
Songyun Xu

As one feasible solution of brake-by-wire systems, electro-hydraulic brake system has been made available into production recently. Electro-hydraulic brake system must work cooperatively with the hydraulic control unit of anti-lock braking system. Due to the mechanical configuration involving electric motor + reduction gear, the electro-hydraulic brake system could be stiffer in contrast to a conventional vacuum booster. That is to say, higher pressure peaks and pressure oscillation could occur during an active anti-lock braking system control. Actually, however, electro-hydraulic brake system and anti-lock braking system are produced by different suppliers considering brake systems already in production. Limited signals and operations of anti-lock braking system could be provided to the supplier of electro-hydraulic brake system. In this work, a master cylinder pressure reduction logic is designed based on speed servo system for active pressure modulation of electro-hydraulic brake system under the anti-lock braking system–triggered situation. The pressure reduction logic comprises of model-based friction compensation, feedforward and double closed-loop feedback control. The pressure closed-loop is designed as the outer loop, and the motor rotation speed closed-loop is drawn into the inner loop of feedback control. The effectiveness of the proposed controller is validated by vehicle experiment in typical braking situations. The results show that the controller remains stable against parameter uncertainties in extreme condition such as low temperature and mismatch of friction model. In contrast to the previous methods, the comparison results display the improved dynamic cooperative performance of electro-hydraulic brake system and anti-lock braking system and robustness.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 91
Author(s):  
Michal Bartys

<p class="Abstract">This paper discusses the origin and problem of the fault compensation effect. The fault compensation effect is an underrated common side effect of the fault isolation approaches developed within the Fault Detection and Isolation (FDI) community. In part, this is justified due to the relatively low probability of such an effect. On the other hand, there is a common belief that the inability to isolate faults due to this effect is the evident drawback of model-based diagnostics. This paper shows how, and under which conditions, the fault compensation effect can be identified. In this connection, the necessary and sufficient conditions for the fault compensation effect are formulated and exemplified by diagnosing a single buffer tank system in open and closed-loop arrangements. In this regard, we also show the drawbacks of a bi-valued residual evaluation for fault isolation. In contrast, we outline the advantages of a three-valued residual evaluation. This paper also brings a series of conclusions allowing for a better understanding of the fault compensation effect. In addition, we show the difference between fault compensation and fault-masking effects.</p>


2016 ◽  
Vol 14 (1) ◽  
pp. 2-16
Author(s):  
S. Vinodh ◽  
Sharath Kumar T.

Purpose – The purpose of this paper is to report a study in which creative design concepts have been applied to automotive brake rotor design. Design/methodology/approach – The literature review on creative design concepts and braking system scenario has been carried out. By studying the existing brake rotors and applying creative design concepts, modified rotor designs have been developed. Findings – The experience gained out of the study indicated that braking efficiency and durability of the braking system can be significantly improved by the adoption of proposed designs. Research limitations/implications – The research has been carried out for an automotive passenger car. The findings of this research work could be extended to similar models of buses and trucks. Practical implications – The usage of the proposed designs reduces the driver’s effort in braking and adds significantly to the life of the rotors. Originality/value – A case study has been reported to indicate the application of creative design concepts for enhancing the efficiency of automotive braking system in cars.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
An-quan Sun ◽  
Lin Zhang ◽  
Wen-feng Wang ◽  
Jun Wang ◽  
Tian-lin Niu ◽  
...  

This paper considers the robust fault detection and isolation (FDI) problem for a class of nonlinear networked systems (NSs) with randomly occurring quantisations (ROQs). After vector augmentation, Lyapunov function is introduced to ensure the asymptotically mean-square stability of fault detection system. By transforming the quantisation effects into sector-bounded parameter uncertainties, sufficient conditions ensuring the existence of fault detection filter are proposed, which can reduce the difference between output residuals and fault signals as small as possible underH∞framework. Finally, an example linearized from a vehicle system is introduced to show the efficiency of the proposed fault detection filter.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1115
Author(s):  
Jaesu Han ◽  
Sangseok Yu ◽  
Jaeyoung Han

The development of fuel cell electric vehicles in recent years has led to increased interest in the use of fuel cells as sources of renewable energy. To achieve successful commercialization of fuel cell vehicles, it will be necessary to guarantee the safety, reliability, and lifetime of fuel cell systems by predictive fault detection and isolation (FDI). In this study, the parity equation, an observer, and a Kalman filter are employed together to compare the characteristics of FDI, focusing on the sensors of the thermal management system. Residuals corresponding to the difference between temperature outputs of linear models under driving cycles and nonlinear temperature outputs are used to isolate faults. Then, assessment of three model-based sensor FDI schemes is used to isolate sensor faults using the Cumulative Sum Control Chart (CUSUM) method. Generated residuals are evaluated by CUSUM to detect the presence of a sensor fault. As a result, isolated sensor faults are assessed.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (1) ◽  
pp. 33-41
Author(s):  
YVON THARRAULT ◽  
MOULOUD AMAZOUZ

Recovery boilers play a key role in chemical pulp mills. Early detection of defects, such as water leaks, in a recovery boiler is critical to the prevention of explosions, which can occur when water reaches the molten smelt bed of the boiler. Early detection is difficult to achieve because of the complexity and the multitude of recovery boiler operating parameters. Multiple faults can occur in multiple components of the boiler simultaneously, and an efficient and robust fault isolation method is needed. In this paper, we present a new fault detection and isolation scheme for multiple faults. The proposed approach is based on principal component analysis (PCA), a popular fault detection technique. For fault detection, the Mahalanobis distance with an exponentially weighted moving average filter to reduce the false alarm rate is used. This filter is used to adapt the sensitivity of the fault detection scheme versus false alarm rate. For fault isolation, the reconstruction-based contribution is used. To avoid a combinatorial excess of faulty scenarios related to multiple faults, an iterative approach is used. This new method was validated using real data from a pulp and paper mill in Canada. The results demonstrate that the proposed method can effectively detect sensor faults and water leakage.


Sign in / Sign up

Export Citation Format

Share Document