scholarly journals COVID-19 Pneumonia Level Detection using Deep Learning Algorithm

Author(s):  
Kayhan Ghafoor

The first COVID-19 confirmed case is reported in Wuhan, China and spread across the globe with unprecedented impact on humanity. Since this pandemic requires pervasive diagnosis, it is significant to develop smart, fast and efficient detection technique. To this end, we developed an Artificial Intelligence (AI) engine to classify the lung inflammation level (mild, progressive, severe stage) of the COVID-19 confirmed patient. In particular, the developed model consists of two phases; in the first phase, we calculate the volume and density of lesions and opacities of the CT images of the confirmed COVID-19 patient using Morphological approaches. In the second phase, the second phase classifies the pneumonia level of the confirmed COVID-19 patient. To achieve precise classification of lung inflammation, we use modified Convolution Neural Network (CNN) and k-Nearest Neighbor (kNN). The result of the experiments show that the utilized models can provide the accuracy up to 95.65\% and 91.304 \% of CNN and kNN respectively.<br>

Author(s):  
Kayhan Ghafoor

The first COVID-19 confirmed case is reported in Wuhan, China and spread across the globe with unprecedented impact on humanity. Since this pandemic requires pervasive diagnosis, it is significant to develop smart, fast and efficient detection technique. To this end, we developed an Artificial Intelligence (AI) engine to classify the lung inflammation level (mild, progressive, severe stage) of the COVID-19 confirmed patient. In particular, the developed model consists of two phases; in the first phase, we calculate the volume and density of lesions and opacities of the CT images of the confirmed COVID-19 patient using Morphological approaches. In the second phase, the second phase classifies the pneumonia level of the confirmed COVID-19 patient. To achieve precise classification of lung inflammation, we use modified Convolution Neural Network (CNN) and k-Nearest Neighbor (kNN). The result of the experiments show that the utilized models can provide the accuracy up to 95.65\% and 91.304 \% of CNN and kNN respectively.<br>


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


2021 ◽  
Vol 15 (1) ◽  
pp. 1-20
Author(s):  
Knitchepon Chotchantarakun ◽  
Ohm Sornil

In the past few decades, the large amount of available data has become a major challenge in data mining and machine learning. Feature selection is a significant preprocessing step for selecting the most informative features by removing irrelevant and redundant features, especially for large datasets. These selected features play an important role in information searching and enhancing the performance of machine learning models. In this research, we propose a new technique called One-level Forward Multi-level Backward Selection (OFMB). The proposed algorithm consists of two phases. The first phase aims to create preliminarily selected subsets. The second phase provides an improvement on the previous result by an adaptive multi-level backward searching technique. Hence, the idea is to apply an improvement step during the feature addition and an adaptive search method on the backtracking step. We have tested our algorithm on twelve standard UCI datasets based on k-nearest neighbor and naive Bayes classifiers. Their accuracy was then compared with some popular methods. OFMB showed better results than the other sequential forward searching techniques for most of the tested datasets.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hekmat Moumivand ◽  
Rasool Seidi Piri ◽  
Fatemeh Kheiraei

AbstractIn this paper, a new method for automatic classification of texts is presented. This system includes two phases; text processing and text categorization. In the first phase, various indexing criteria such as bigram, trigram and quad-gram are presented to extract the properties. Then, in the second phase, the W-SMO machine learning algorithm is used to train the system. In order to evaluate and compare the results of the two criteria of accuracy and readability, Macro-F1 and Micro-F1 have been calculated for different indexing methods. The results of experiments performed on 7676 standard text documents of Reuters showed that our proposed method has the best performance compared to the W-j48, Naïve Bayes, K-NN and Decision Tree algorithms.


2021 ◽  
Author(s):  
tejaswini kambaiahgari ◽  
Uma Rao K

Abstract In the present world, there are many songs over the internet. But the information retrieval on these songs can be complicated. This paper intends to classify songs based on emotions using deep learning. We propose a strategy to recognize the emotion present in a song by classifying their spectrograms, which contains both time and frequency information. According to human psychology, neurons within a sub pop- ulation of our brain did not react the same way for all the emotions.So only specific neurons need to be triggered for identifying an emotion. Dif- ferent deep learning and machine learning algorithms are implemented to build music emotion recognizer. The main objective of this study is to study about the features which are important for audio file ,to de- velop a music emotion classifier using deep learning algorithm and also to validate the model.The datasets are split into training and testing sets, models are trained with training data set. The accuracy of Artifi- cial Neural Network (ANN) model is 79.7% ,K-Nearest Neighbor (KNN) model is 78.26% and logistic regression for gender classification is 81%.


Author(s):  
M. Jeyanthi ◽  
C. Velayutham

In Science and Technology Development BCI plays a vital role in the field of Research. Classification is a data mining technique used to predict group membership for data instances. Analyses of BCI data are challenging because feature extraction and classification of these data are more difficult as compared with those applied to raw data. In this paper, We extracted features using statistical Haralick features from the raw EEG data . Then the features are Normalized, Binning is used to improve the accuracy of the predictive models by reducing noise and eliminate some irrelevant attributes and then the classification is performed using different classification techniques such as Naïve Bayes, k-nearest neighbor classifier, SVM classifier using BCI dataset. Finally we propose the SVM classification algorithm for the BCI data set.


Author(s):  
Herman Herman ◽  
Demi Adidrana ◽  
Nico Surantha ◽  
Suharjito Suharjito

The human population significantly increases in crowded urban areas. It causes a reduction of available farming land. Therefore, a landless planting method is needed to supply the food for society. Hydroponics is one of the solutions for gardening methods without using soil. It uses nutrient-enriched mineral water as a nutrition solution for plant growth. Traditionally, hydroponic farming is conducted manually by monitoring the nutrition such as acidity or basicity (pH), the value of Total Dissolved Solids (TDS), Electrical Conductivity (EC), and nutrient temperature. In this research, the researchers propose a system that measures pH, TDS, and nutrient temperature values in the Nutrient Film Technique (NFT) technique using a couple of sensors. The researchers use lettuce as an object of experiment and apply the k-Nearest Neighbor (k-NN) algorithm to predict the classification of nutrient conditions. The result of prediction is used to provide a command to the microcontroller to turn on or off the nutrition controller actuators simultaneously at a time. The experiment result shows that the proposed k-NN algorithm achieves 93.3% accuracy when it is k = 5.


Sign in / Sign up

Export Citation Format

Share Document