scholarly journals Temperature Impact on Non-Linear Inductors in Operating Conditions for SMPS

Author(s):  
Daniele Scirè ◽  
Marco Ventimiglia ◽  
giuseppe lullo ◽  
gianpaolo vitale

The exploitation of power inductors outside their linear region in switching converters requires a detailed description of the magnetization curve that is often not included in the datasheets; besides, the temperature of the inductor must be taken into account. This paper shows how to characterize the behavior of an inductor when it is operated up to saturation and its temperature rises. In order to characterize the inductor in real operating conditions, a dedicated measurement rig has been developed. It consists of a switching converter that includes the inductor under test and is controlled by a virtual instrument developed in LabVIEW. The characterization system was tested by retrieving the inductance and the magnetization curves vs. current for two commercial inductors at core temperatures up to 105°C. The magnetic core is then characterized by the saturation current versus inductance, obtaining an expression for the whole family of inductor sharing the same core. Finally, we analyzed experimentally the thermal transient of the inductors in operating conditions confirming the fundamental role of temperature in changing the current profiles and the core saturation condition.

2021 ◽  
Author(s):  
Daniele Scirè ◽  
Marco Ventimiglia ◽  
giuseppe lullo ◽  
gianpaolo vitale

The exploitation of power inductors outside their linear region in switching converters requires a detailed description of the magnetization curve that is often not included in the datasheets; besides, the temperature of the inductor must be taken into account. This paper shows how to characterize the behavior of an inductor when it is operated up to saturation and its temperature rises. In order to characterize the inductor in real operating conditions, a dedicated measurement rig has been developed. It consists of a switching converter that includes the inductor under test and is controlled by a virtual instrument developed in LabVIEW. The characterization system was tested by retrieving the inductance and the magnetization curves vs. current for two commercial inductors at core temperatures up to 105°C. The magnetic core is then characterized by the saturation current versus inductance, obtaining an expression for the whole family of inductor sharing the same core. Finally, we analyzed experimentally the thermal transient of the inductors in operating conditions confirming the fundamental role of temperature in changing the current profiles and the core saturation condition.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3924
Author(s):  
Daniele Scirè ◽  
Gianpaolo Vitale ◽  
Marco Ventimiglia ◽  
Giuseppe Lullo

The exploitation of power inductors outside their linear region in switching converters can be achieved by raising the current until a decrease in the inductance can be noticed. This allows using a smaller magnetic core, increasing the power density of the converter. On the other hand, a detailed description of the magnetization curve including the temperature is required. Since this information is often not included in the inductor’s datasheets, this paper shows how to identify the behavior of an inductor when it is operated up to saturation and its temperature rises. In order to characterize the inductor in real operating conditions, a dedicated measurement rig was developed. It consists of a switching converter that encompasses the inductor under test and is controlled by a virtual instrument developed in LabVIEW. The characterization system was tested by retrieving the inductance and the magnetization curves vs. current for two commercial inductors at core temperatures up to 105 °C. The magnetic core was then characterized by the saturation current vs. inductance, obtaining an expression for the whole family of inductors sharing the same core. Finally, we experimentally analyzed the thermal transient of the inductors in operating conditions, confirming the fundamental role of the temperature in changing the current profiles and the core saturation condition.


2021 ◽  
Author(s):  
Daniele Scirè ◽  
Marco Ventimiglia ◽  
giuseppe lullo ◽  
gianpaolo vitale

The exploitation of power inductors outside their linear region in switching converters can be achieved by raising the current until a decreasing of the inductance can be noticed. It allows using a smaller magnetic core increasing the power density of the converter. On the other hand, a detailed description of the magnetization curve including the temperature is required. Since this information is often not included in the inductor’s datasheets, this paper shows how to identify the behavior of an inductor when it is operated up to saturation and its temperature rises. In order to characterize the inductor in real operating conditions, a dedicated measurement rig has been developed. It consists of a switching converter that encompasses the inductor under test and is controlled by a virtual instrument developed in LabVIEW. The characterization system was tested by retrieving the inductance and the magnetization curves vs. current for two commercial inductors at core tem-peratures up to 105°C. The magnetic core is then characterized by the saturation current versus inductance, obtaining an expression for the whole family of inductor sharing the same core. Finally, we analyzed experimentally the thermal transient of the inductors in operating conditions con-firming the fundamental role of temperature in changing the current profiles and the core saturation condition.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 984
Author(s):  
Rodrigo Loera-Palomo ◽  
Jorge A. Morales-Saldaña ◽  
Michel Rivero ◽  
Carlos Álvarez-Macías ◽  
Cesar A. Hernández-Jacobo

The development of switching converters to perform with the power processing of photovoltaic (PV) applications has been a topic receiving growing interest in recent years. This work presents a nonisolated buck-boost converter with a quadratic voltage conversion gain based on the I–IIA noncascading structure. The converter has a reduced component count and it is formed by a pair of L–C networks and two active switches, which are operated synchronously to achieve a wide conversion ratio and a quadratic dependence with the duty ratio. Additionally, the analysis using different sources and loads demonstrates the differences in the behavior of the converter, as well as the pertinence of including PV devices (current sources) into the analysis of new switching converter topologies for PV applications. In this work, the voltage conversion ratio, steady-state operating conditions and semiconductor stresses of the proposed converter are discussed in the context of PV applications. The operation of the converter in a PV scenario is verified by experimental results.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Haim Kalman

AbstractAny scientific behavior is best represented by nondimensional numbers. However, in many cases, for pneumatic conveying systems, dimensional equations are developed and used. In some cases, many of the nondimensional equations include Reynolds (Re) and Froude (Fr) numbers; they are usually defined for a limited range of materials and operating conditions. This study demonstrates that most of the relevant flow types, whether in horizontal or vertical pipes, can be better described by Re and Archimedes (Ar) numbers. Ar can also be used in hydraulic conveying systems. This paper presents many threshold velocities that are accurately defined by Re as a simple power function of Ar. Many particulate materials are considered by Ar, thereby linking them to a common behavior. Using various threshold velocities, a flow regime chart for horizontal conveying is presented in this paper.


Author(s):  
Brittany Goldsmith ◽  
Elizabeth Foyt ◽  
Madhu Hariharan

As offshore field developments move into deeper water, one of the greatest challenges is in designing riser systems capable of overcoming the added risks of more severe environments, complicated well requirements and uncertainty of operating conditions. The failure of a primary riser component could lead to unacceptable consequences, including environmental damage, lost production and possible injury or loss of human life. Identification of the risks facing riser systems and management of these risks are essential to ensure that riser systems operate without failure. Operators have recognized the importance of installing instrumentation such as global positioning systems (GPS), vessel motion measurement packages, wind and wave sensors and Acoustic Doppler Current Profiler (ADCP) units to monitor vessel motions and environmental conditions. Additionally, high precision monitoring equipment has been developed for capturing riser response. Measured data from these instruments allow an operator to determine when the limits of acceptable response, predicted by analysis or determined by physical limitations of the riser components, have been exceeded. Regular processing of measured data through automated routines ensures that integrity can be quickly assessed. This is particularly important following extreme events, such as a hurricane or loop current. High and medium alert levels are set for each parameter, based on design analysis and operating data. Measured data is compared with these alert levels, and when an alert level is reached, further response evaluation or inspection of the components in question is recommended. This paper will describe the role of offshore monitoring in an integrity management program and discuss the development of alert levels based on potential failure modes of the riser systems. The paper will further demonstrate how this process is key for an effective integrity management program for deepwater riser systems.


2021 ◽  
Author(s):  
Marco Ventimiglia ◽  
Daniele Scire ◽  
Giuseppe Lullo ◽  
Gianpaolo Vitale

2019 ◽  
Vol 8 (12) ◽  
pp. N220-N233
Author(s):  
Mohammad Al-Mamun ◽  
Sean W. King ◽  
Marius Orlowski

A good candidate for replacing the inert platinum (Pt) electrode in the well-behaved Cu/TaOx/Pt resistive RAM memory cell is ruthenium (Ru), already successfully deployed in the CMOS back end of line. We benchmark Cu/TaOx/Ru device against Cu/TaOx/Pt and investigate the impact of embedment of Cu/TaOx/Ru on two different substrates, Ti(20nm)/SiO2(730nm)/Si and Ti(20nm)/TaOx(30nm)/SiO2(730nm)/Si, on the cell's electrical performance. While the devices show similar switching performance at some operating conditions, there are notable differences at other operation regimes shedding light on the basic switching mechanisms and the role of the inert electrode. The critical switching voltages are significantly higher for Ru than for Pt devices and can be partly explained by the work function difference and different surface roughness of the inert electrode. The poorer switching properties of the Ru device are attributed to the degraded inertness properties of the Ru electrode as a stopping barrier for Cu+ ions as compared to the Pt electrode. However, some of the degraded electrical properties of the Ru devices can be mitigated by an improved integration of the device on the Si wafer. This improvement is attributed to the suppression of crystallization of Ru and its silicidation reactions that take place at elevated local temperatures, present mainly during the reset operation. This hypothesis has been corroborated by extensive XRD studies of multiple layer systems annealed at temperatures between 300K and 1173K.


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Ummikalsom Abidin ◽  
Jumril Yunas ◽  
Burhanuddin Yeop Majlis

Joule heating effect is substantial in an electromagnet system due to high density current from current-carrying conductor for high magnetic field generation. In Lab-on-chip (LoC) Magnetically Activated Cell Sorting (MACS) device, Joule heating effect generating high temperature and affecting the biological cells viability is investigated. The temperature rise of the integrated system was measured using resistance temperature detector, RTD Pt100. Three temperature rise conditions which are from the bare spiral-shaped magnet wire, the combination of magnet wire and on-chip magnetic core and combination of magnet wire, on-chip magnetic core and 150 mm polydimethylsiloxane (PDMS) layer have been investigated.  The combination of electromagnet of spiral-shaped magnet wire coil and on-chip magnetic core has reduced the temperature significantly which are, ~ 38 %  and ~ 26 % with magnet wire winding, N = 10 (IDC = 3.0 A, t = 210 s) and N = 20 (IDC = 2.5 A, t = 210 s) respectively. The reduced Joule heating effect is expected due to silicon chip of high thermal conductivity material enable fast heat dissipation to the surrounding.  Therefore, the integration of electromagnet system and on-chip magnetic core has the potential to be used as part of LoC MACS system provided the optimum operating conditions are determined


Author(s):  
Giacomo Bonciolini ◽  
Nicolas Noiray

Sequential combustion constitutes a major technological step-change for gas turbines applications. This design provides higher operational flexibility, lower emissions and higher efficiency compared to today’s conventional architectures. Like any constant pressure combustion system, sequential combustors can undergo thermoacoustic instabilities. These instabilities potentially lead to high-amplitude acoustic limit cycles, which shorten the engine components’ lifetime and therefore reduce their reliability and availability. In case of a sequential system, the two flames are mutually coupled via acoustic and entropy waves. This additional inter-stages interaction markedly complicates the already challenging problem of thermoacoustic instabilities. As a result, new and unexplored system dynamics are possible. In this work, experimental data from our generic sequential combustor are presented. The system exhibits many different distinctive dynamics, as function of the operation parameters and of the combustor arrangement. This paper investigates a particular bifurcation, where two thermoacoustic modes synchronize their self-sustained oscillations over a range of operating conditions. A low-order model of this thermoacoustic bifurcation is proposed. This consists of two coupled stochastically driven non-linear oscillators, and is able to reproduce the peculiar dynamics associated with this synchronization phenomenon. The model aids in understanding what the physical mechanisms that play a key role in the unsteady combustor physics are. In particular, it highlights the role of entropy waves, which are a significant driver of thermoacoustic instabilities in this sequential setup. This research helps to lay the foundations for understanding the thermoacoustic instabilities in sequential combustion systems.


Sign in / Sign up

Export Citation Format

Share Document