scholarly journals Application of Input Shaping Method to Vibrations Damping in a Type-IV Wind Turbine Interfaced with a Grid-Forming Converter

Author(s):  
Artur AVAZOV

Type-IV wind turbines can experience torsional vibrations in the drivetrain structure. This can lead to additional stress on turbine components and a quality reduction of the power delivered to the grid. The vibrations are mostly induced by fast variations of the electromagnetic torque, which depends on the control of a back-to-back converter. A number of studies have already presented methods to mitigate the drivetrain vibrations. However, the research was dedicated to cases when the converter, interfacing a wind turbine to the grid, operates based on a grid-following control. A wind turbine can be also interfaced to a grid-forming converter. In this case, a back-to-back converter control creates a strong link between the electromagnetic torque and grid dynamics, so the abovementioned problem remains relevant. Therefore, this paper presents a solution to damp torsional vibrations in the direct drive of a Type-IV wind turbine, interfaced to the electrical power grid with a voltage source converter based on a grid-forming control. The damping of the drivetrain vibrations relies on the input shaping method implemented using a zero-vibration filter. Simulation results prove the effectiveness of the method to damp drivetrain vibrations during grid frequency variations. In addition to that, damping impact on system behavior with respect to other parameters is analyzed and its mitigation is discussed.

2021 ◽  
Author(s):  
Artur AVAZOV

Type-IV wind turbines can experience torsional vibrations in the drivetrain structure. This can lead to additional stress on turbine components and a quality reduction of the power delivered to the grid. The vibrations are mostly induced by fast variations of the electromagnetic torque, which depends on the control of a back-to-back converter. A number of studies have already presented methods to mitigate the drivetrain vibrations. However, the research was dedicated to cases when the converter, interfacing a wind turbine to the grid, operates based on a grid-following control. A wind turbine can be also interfaced to a grid-forming converter. In this case, a back-to-back converter control creates a strong link between the electromagnetic torque and grid dynamics, so the abovementioned problem remains relevant. Therefore, this paper presents a solution to damp torsional vibrations in the direct drive of a Type-IV wind turbine, interfaced to the electrical power grid with a voltage source converter based on a grid-forming control. The damping of the drivetrain vibrations relies on the input shaping method implemented using a zero-vibration filter. Simulation results prove the effectiveness of the method to damp drivetrain vibrations during grid frequency variations. In addition to that, damping impact on system behavior with respect to other parameters is analyzed and its mitigation is discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Lei Chen ◽  
Hongkun Chen ◽  
Jun Yang ◽  
Huiwen He

Considering the rapid development of high temperature superconducting (HTS) materials, superconducting power applications have attracted more and more attention in the power industry, particularly for electrical systems including renewable energy. This paper conducts experimental tests on a voltage compensation type active superconducting fault current limiter (SFCL) prototype and explores the SFCL’s application in a permanent-magnet synchronous generator- (PMSG-) based wind turbine system. The SFCL prototype is composed of a three-phase air-core superconducting transformer and a voltage source converter (VSC) integrated with supercapacitor energy storage. According to the commissioning test and the current-limiting test, the SFCL prototype can automatically suppress the fault current and offer a highly controlled compensation voltage in series with the 132 V electrical test system. To expand the application of the active SFCL in a 10 kW class PMSG-based wind turbine system, digital simulations under different fault cases are performed in MATLAB/Simulink. From the demonstrated simulation results, using the active SFCL can help to maintain the power balance, mitigate the voltage-current fluctuation, and improve the wind energy efficiency. The active SFCL can be regarded as a feasible solution to assist the PMSG-based wind turbine system to achieve low-voltage ride-through (LVRT) operation.


2018 ◽  
Author(s):  
Nicolás Espinoza ◽  
Ola Carlson

Abstract. One of the main challenge for the wind energy development is to make the wind turbines efficient in respect of costs while maintaining a safe and reliable operation. An important design criterion is the fulfilment of Grid Codes given by transmission system operators (TSO). The Grid Codes state how wind turbines/farms must behave when connected to the grid in normal and abnormal conditions. In this regard, it is well known that not all the technical requirements can be tested by using the actual impedance-based testing equipment. For this reason, a new type of testing equipment which comprises the use of fully-rated Voltage Source Converter (VSC) in back-to-back configuration is proposed. Thanks to the full controllability of the applied voltage in terms of magnitude, phase and frequency, the use of VSC-based testing equipment, provides more flexibility as compared with actual testing systems. In addition, the AC grid is decoupled from the tested object when performing the test; meaning that the strength of the grid is not a major limitation. Finally, test results of a 4 MW wind turbine and an 8 MW test equipment, located in Gothenburg, Sweden, are shown in order to validate the investigated grid code testing methodology.


Author(s):  
Lakshman Naik P ◽  
K Palanisamy

<p>The Green Energy sources (solar, wind) are performing a vigorous role to reach the electrical power demand. Due to the presence of non-linear loads, reactive loads in the distribution system and the injection of wind power into the grid integrated system results power quality issues like current harmonics, voltage fluctuations, reactive power demand etc. This paper mainly investigates the designing and satisfactory performance evaluation of solar farm as PV-STATCOM (Static Synchronous Compensator) for enhancement of power quality in grid tie system by using MATLAB environment (Simulink). The proportional and integral (PI) Controller and Hysteresis Current Controller (HCC) were effectively utilized to inject the desired current from voltage source converter (VSC) based PV-STATCOM at PCC for the mitigation of quality related problems in the proposed test system.</p>


2021 ◽  
Author(s):  
Artur AVAZOV ◽  
Frédéric Colas ◽  
Jef Beerten ◽  
Xavier Guillaud

This paper introduces a Type-IV wind turbine interfaced to a grid-forming converter. In order to retain the stable operation of a wind turbine in the presence of a grid-forming control, the classical control of a back-to-back converter has to be modified. The modification of this control creates a strong link between a wind turbine and grid dynamics. From the grid side perspective, this link allows provision of the inertial response from a wind turbine during transient events. On the wind turbine side, this coupling causes the appearance of the torsional vibrations within the drivetrain structure. These vibrations are then propagated to the grid as power oscillations. As a result, there is a negative impact on the mechanical components of a wind turbine as well as on the power system operation. In this work, a solution is introduced in order to suppress the undesired vibrations by applying a damping technique to the control of a back-to-back converter combined with a grid-forming control. Based on the conducted analysis, the addition of a damping filter results in the mitigation of torsional vibrations.


2014 ◽  
Vol 1 (1-2) ◽  
Author(s):  
Ravi Anant Kishore ◽  
Anthony Marin ◽  
Shashank Priya

AbstractThere is growing need for the green, reliable, and cost-effective power solution for the expanding wireless microelectronic devices. In many scenarios, these needs can be met through a small-scale wind energy portable turbine (SWEPT) that operates near ground level where wind speed is of the order of few meters per second. SWEPT is a three-bladed, 40 cm rotor diameter, direct-drive, horizontal-axis wind turbine that has very low cut-in wind speed of 1.7 m/s. It operates in a wide range of wind speeds between 1.7 m/s and 10 m/s and produces rated power output of 1 W at wind speed of 4.0 m/s. The wind turbine is capable of producing electrical power up to 9.8 W at wind speed of 10 m/s. The maximum efficiency of SWEPT was found to be around 21% which makes it one of the most efficient wind turbines reported at the small scale and low wind speed. These advancements open many new opportunities for embedding and utilizing wireless and portable devices.


Author(s):  
Nadia Maria Salgado-Herrera ◽  
David Campos-Gaona ◽  
Olimpo Anaya-Lara ◽  
Aurelio Medina-Rios ◽  
Roberto Tapia-Sanchez ◽  
...  

In this paper, the active front-end (AFE) converter topology for the total harmonic distortion (THD) reduction in a wind energy system (WES) is used. A higher THD results in serious pulsations in the wind turbine (WT) output power and in several power losses at the WES. The AFE converter topology improves capability, efficiency and reliability in the energy conversion devices; by modifying a conventional back-to-back converter, from using a single voltage source converter (VSC) to use pVSC connected in parallel the AFE converter is generated. The THD reduction is done by applying a different phase shift angle at the carrier of digital sinusoidal pulse width modulation (DSPWM) switching signals of each VSC. To verify the functionality of the proposed methodology, the WES simulation in Matlab-Simulink&reg; is analyzed, and the experimental laboratory tests using the concept of rapid control prototyping and the real-time simulator Opal-RT&reg; Technologies is achieved. The obtained results show a type-4 WT with total output power of 6MVA, generating a THD reduction up to 5.5 times at the WES.


2021 ◽  
Author(s):  
Artur AVAZOV ◽  
Frédéric Colas ◽  
Jef Beerten ◽  
Xavier Guillaud

This paper introduces a Type-IV wind turbine interfaced to a grid-forming converter. In order to retain the stable operation of a wind turbine in the presence of a grid-forming control, the classical control of a back-to-back converter has to be modified. The modification of this control creates a strong link between a wind turbine and grid dynamics. From the grid side perspective, this link allows provision of the inertial response from a wind turbine during transient events. On the wind turbine side, this coupling causes the appearance of the torsional vibrations within the drivetrain structure. These vibrations are then propagated to the grid as power oscillations. As a result, there is a negative impact on the mechanical components of a wind turbine as well as on the power system operation. In this work, a solution is introduced in order to suppress the undesired vibrations by applying a damping technique to the control of a back-to-back converter combined with a grid-forming control. Based on the conducted analysis, the addition of a damping filter results in the mitigation of torsional vibrations.


Sign in / Sign up

Export Citation Format

Share Document