scholarly journals A Review on Remote Sensing Data Fusion with Generative Adversarial Networks (GAN)

Author(s):  
Peng Liu

In the past decades, remote sensing (RS) data fusion has always been an active research community. A large number of algorithms and models have been developed. Generative Adversarial Networks (GAN), as an important branch of deep learning, show promising performances in variety of RS image fusions. This review provides an introduction to GAN for remote sensing data fusion. We briefly review the frequently-used architecture and characteristics of GAN in data fusion and comprehensively discuss how to use GAN to realize fusion for homogeneous RS data, heterogeneous RS data, and RS and ground observation data. We also analyzed some typical applications with GAN-based RS image fusion. This review takes insight into how to make GAN adapt to different types of fusion tasks and summarizes the advantages and disadvantages of GAN-based RS data fusion. Finally, we discuss the promising future research directions and make a prediction on its trends.

2021 ◽  
Author(s):  
Peng Liu

In the past decades, remote sensing (RS) data fusion has always been an active research community. A large number of algorithms and models have been developed. Generative Adversarial Networks (GAN), as an important branch of deep learning, show promising performances in variety of RS image fusions. This review provides an introduction to GAN for remote sensing data fusion. We briefly review the frequently-used architecture and characteristics of GAN in data fusion and comprehensively discuss how to use GAN to realize fusion for homogeneous RS data, heterogeneous RS data, and RS and ground observation data. We also analyzed some typical applications with GAN-based RS image fusion. This review takes insight into how to make GAN adapt to different types of fusion tasks and summarizes the advantages and disadvantages of GAN-based RS data fusion. Finally, we discuss the promising future research directions and make a prediction on its trends.


2020 ◽  
Vol 12 (24) ◽  
pp. 4190
Author(s):  
Siyamthanda Gxokwe ◽  
Timothy Dube ◽  
Dominic Mazvimavi

Wetlands are ranked as very diverse ecosystems, covering about 4–6% of the global land surface. They occupy the transition zones between aquatic and terrestrial environments, and share characteristics of both zones. Wetlands play critical roles in the hydrological cycle, sustaining livelihoods and aquatic life, and biodiversity. Poor management of wetlands results in the loss of critical ecosystems goods and services. Globally, wetlands are degrading at a fast rate due to global environmental change and anthropogenic activities. This requires holistic monitoring, assessment, and management of wetlands to prevent further degradation and losses. Remote-sensing data offer an opportunity to assess changes in the status of wetlands including their spatial coverage. So far, a number of studies have been conducted using remotely sensed data to assess and monitor wetland status in semi-arid and arid regions. A literature search shows a significant increase in the number of papers published during the 2000–2020 period, with most of these studies being in semi-arid regions in Australia and China, and few in the sub-Saharan Africa. This paper reviews progress made in the use of remote sensing in detecting and monitoring of the semi-arid and arid wetlands, and focuses particularly on new insights in detection and monitoring of wetlands using freely available multispectral sensors. The paper firstly describes important characteristics of wetlands in semi-arid and arid regions that require monitoring in order to improve their management. Secondly, the use of freely available multispectral imagery for compiling wetland inventories is reviewed. Thirdly, the challenges of using freely available multispectral imagery in mapping and monitoring wetlands dynamics like inundation, vegetation cover and extent, are examined. Lastly, algorithms for image classification as well as challenges associated with their uses and possible future research are summarised. However, there are concerns regarding whether the spatial and temporal resolutions of some of the remote-sensing data enable accurate monitoring of wetlands of varying sizes. Furthermore, it was noted that there were challenges associated with the both spatial and spectral resolutions of data used when mapping and monitoring wetlands. However, advancements in remote-sensing and data analytics provides new opportunities for further research on wetland monitoring and assessment across various scales.


2021 ◽  
Vol 13 (6) ◽  
pp. 1131
Author(s):  
Tao Yu ◽  
Pengju Liu ◽  
Qiang Zhang ◽  
Yi Ren ◽  
Jingning Yao

Detecting forest degradation from satellite observation data is of great significance in revealing the process of decreasing forest quality and giving a better understanding of regional or global carbon emissions and their feedbacks with climate changes. In this paper, a quick and applicable approach was developed for monitoring forest degradation in the Three-North Forest Shelterbelt in China from multi-scale remote sensing data. Firstly, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Ratio Vegetation Index (RVI), Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FPAR) and Net Primary Production (NPP) from remote sensing data were selected as the indicators to describe forest degradation. Then multi-scale forest degradation maps were obtained by adopting a new classification method using time series MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper Plus (ETM+) images, and were validated with ground survey data. At last, the criteria and indicators for monitoring forest degradation from remote sensing data were discussed, and the uncertainly of the method was analyzed. Results of this paper indicated that multi-scale remote sensing data have great potential in detecting regional forest degradation.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1276-1279 ◽  
Author(s):  
Yin Tai Na

The three commonly used remote sensing land surface temperature retrieval methods are described, namely single-window algorithm, split window algorithm and multi-channel algorithm, which have their advantages and disadvantages. The land surface temperature (LST) of study area was retrieved with multi-source remote sensing data. LST of study area was retrieved with the split window algorithm on January 10, 2003 and November 19, 2003 which is comparatively analyzed with the LST result of ETM+data with the single-window algorithm and the LST result of ASTER data with multi channel algorithm in the same period. The results show that land surface temperature of different land features are significantly different, where the surface temperature of urban land is the highest, and that of rivers and lakes is the lowest, followed by woodland. It is concluded that the expansion of urban green space and protection of urban water can prevent or diminish the urban heat island.


Sign in / Sign up

Export Citation Format

Share Document