scholarly journals ECTS: Enhanced Centralized TSCH Scheduling with Packet Aggregation for Industrial IoT

Author(s):  
Costas Michaelides ◽  
Toni Adame ◽  
Boris Bellalta

The Industrial Internet of Things (IoT) has gained a lot of momentum thanks to the introduction of Time Slotted Channel Hopping (TSCH) in IEEE 802.15.4. At last, we can enjoy collision-free, low-latency wireless communication in challenging environments. Nevertheless, the fixed size of time slots in TSCH provides an opportunity for further enhancements. In this paper, we propose an enhanced centralized TSCH scheduling (ECTS) algorithm with simple packet aggregation while collecting data over a tree topology. Having in mind that the payload of a sensor node is rather short, we attempt to put more than one payload in one packet. Thus, we occupy just one cell to forward them. We investigated the schedule compactness of ECTS in Matlab, and we evaluated its operation, after implementing it in Contiki-NG, using Cooja. Our results show that ECTS with packet aggregation outperforms TASA in terms of slotframe duration and imposes fairness among the nodes in terms of latency. A validation exercise using real motes confirms its successful operation in real deployments.

2021 ◽  
Author(s):  
Costas Michaelides ◽  
Toni Adame ◽  
Boris Bellalta

The Industrial Internet of Things (IoT) has gained a lot of momentum thanks to the introduction of Time Slotted Channel Hopping (TSCH) in IEEE 802.15.4. At last, we can enjoy collision-free, low-latency wireless communication in challenging environments. Nevertheless, the fixed size of time slots in TSCH provides an opportunity for further enhancements. In this paper, we propose an enhanced centralized TSCH scheduling (ECTS) algorithm with simple packet aggregation while collecting data over a tree topology. Having in mind that the payload of a sensor node is rather short, we attempt to put more than one payload in one packet. Thus, we occupy just one cell to forward them. We investigated the schedule compactness of ECTS in Matlab, and we evaluated its operation, after implementing it in Contiki-NG, using Cooja. Our results show that ECTS with packet aggregation outperforms TASA in terms of slotframe duration and imposes fairness among the nodes in terms of latency. A validation exercise using real motes confirms its successful operation in real deployments.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5663
Author(s):  
Atis Elsts

TSCH (Time-Slotted Channel Hopping) and 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4e) low-power wireless networks are becoming prominent in the industrial Internet of Things (IoT) and other areas where high reliability is needed in conjunction with energy efficiency. Due to the complexity of IoT deployments, network simulations are typically used for pre-deployment design and validation. However, it is currently difficult and time-consuming to simulate large-scale IoT networks with thousands of nodes. This paper proposes TSCH-Sim: a new discrete event simulator for IEEE 802.15.4-2015 TSCH and 6TiSCH networks. The evaluation shows that simulation results obtained with TSCH-Sim show a good match with results from other simulators that are commonly used to investigate TSCH networks. At the same time, TSCH-Sim is faster than these alternatives at least by an order of magnitude, making it more practical to carry out simulations of large networks.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3715
Author(s):  
Ioan Ungurean ◽  
Nicoleta Cristina Gaitan

In the design and development process of fog computing solutions for the Industrial Internet of Things (IIoT), we need to take into consideration the characteristics of the industrial environment that must be met. These include low latency, predictability, response time, and operating with hard real-time compiling. A starting point may be the reference fog architecture released by the OpenFog Consortium (now part of the Industrial Internet Consortium), but it has a high abstraction level and does not define how to integrate the fieldbuses and devices into the fog system. Therefore, the biggest challenges in the design and implementation of fog solutions for IIoT is the diversity of fieldbuses and devices used in the industrial field and ensuring compliance with all constraints in terms of real-time compiling, low latency, and predictability. Thus, this paper proposes a solution for a fog node that addresses these issues and integrates industrial fieldbuses. For practical implementation, there are specialized systems on chips (SoCs) that provides support for real-time communication with the fieldbuses through specialized coprocessors and peripherals. In this paper, we describe the implementation of the fog node on a system based on Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 SoC.


2019 ◽  
Vol 9 (20) ◽  
pp. 4323 ◽  
Author(s):  
López de Lacalle ◽  
Posada

The new advances of IIOT (Industrial Internet of Things), together with the progress in visual computing technologies, are being addressed by the research community with interesting approaches and results in the Industry 4.0 domain[...]


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2449
Author(s):  
Jin Qi ◽  
Zian Wang ◽  
Bin Xu ◽  
Mengfei Wu ◽  
Zian Gao ◽  
...  

The adaptive coordination of trust services can provide highly dependable and personalized solutions for industrial requirements in the service-oriented industrial internet of things (IIoT) architecture to achieve efficient utilization of service resources. Although great progress has been made, trust service coordination still faces challenging problems such as trustless industry service, poor coordination, and quality of service (QoS) personalized demand. In this paper, we propose a QoS-driven and adaptive trust service coordination method to implement Pareto-efficient allocation of limited industrial service resources in the background of the IIoT. First, we established a Pareto-effective and adaptive industrial IoT trust service coordination model and introduced a blockchain-based adaptive trust evaluation mechanism to achieve trust evaluation of industrial services. Then, taking advantage of a large and complex search space for solution efficiency, we introduced and compared multi-objective gray-wolf algorithms with the particle swarm optimization (PSO) and dragonfly algorithms. The experimental results showed that by judging and blacklisting malicious raters quickly and accurately, our model can efficiently realize self-adaptive, personalized, and intelligent trust service coordination under the given constraints, improving not only the response time, but also the success rate in coordination.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Michele Luvisotto ◽  
Federico Tramarin ◽  
Lorenzo Vangelista ◽  
Stefano Vitturi

Low-Power Wide-Area Networks (LPWANs) have recently emerged as appealing communication systems in the context of the Internet of Things (IoT). Particularly, they proved effective in typical IoT applications such as environmental monitoring and smart metering. Such networks, however, have a great potential also in the industrial scenario and, hence, in the context of the Industrial Internet of Things (IIoT), which represents a dramatically growing field of application. In this paper we focus on a specific LPWAN, namely, LoRaWAN, and provide an assessment of its performance for typical IIoT employments such as those represented by indoor industrial monitoring applications. In detail, after a general description of LoRaWAN, we discuss how to set some of its parameters in order to achieve the best performance in the considered industrial scenario. Subsequently we present the outcomes of a performance assessment, based on realistic simulations, aimed at evaluating the behavior of LoRaWAN for industrial monitoring applications. Moreover, the paper proposes a comparison with the IEEE 802.15.4 network protocol, which is often adopted in similar application contexts. The obtained results confirm that LoRaWAN can be considered as a strongly viable opportunity, since it is able to provide high reliability and timeliness, while ensuring very low energy consumption.


2021 ◽  
Vol 11 (2) ◽  
pp. 88-101
Author(s):  
Ibrahim Cil ◽  
Fahri Arisoy ◽  
Hilal Kilinc

Industrial Internet of Things is becoming one of the fundamental technologies with the potential to be widely used in shipyards as in other industries to increase information visibility. This article aims to analyze how to develop an industrial IoT-enabled system that provides visibility and tracking of assets at SEDEF Shipyard, which is in the digital transformation process. The research made use of data from previous studies and by using content analysis, the findings were discussed. Industrial IoT enables the collection and analysis of data for more informed decisions.  Based on the findings, sensor data in the shipyard are transmitted to the cloud via connected networks. These data are analysed and combined with other information and presented to the stakeholders. Industrial IoT enables this data flow and monitors processes remotely and gives the ability to quickly change plans as needed. Keywords: Shipyard, Industrial Internet of Things, Cyber-Physical System, Visibility, Assets tracking;        


Sign in / Sign up

Export Citation Format

Share Document