scholarly journals Modeling the MOSFET's Inversion Layer and Its Universal Mobility: A New Experimental Method

Author(s):  
F. Shoucair

<div>We formulate a simple, yet accurate, model for a non-uniform mobile charge density ρ(z) giving rise to a mean potential Ψ* across an inversion layer of finite extent, which we measure by means of a novel, sensitive, experimental method involving nulls of harmonic distortion components (D2 ≈ D3 ≈ 0) of the drain current under sinusoidal excitation below saturation. We thus establish analytically and experimentally, that the low-field, "universal" effective mobility µ<sub>eff</sub> varies as ~(E*<sub>T</sub>)<sup>-1/3 </sup>for transversal fields E<sub>T</sub>*= <b>-</b>(1/ε<sub>si</sub>)<b>·</b>[ɳQ<sub>i</sub> + Q<sub>b</sub>] <b>≤ </b>0.5 MV/cm, wherein ɳ varies continuously between 1/2 and 1/3. We also establish and observe that the higher order, derivative, parameter θ<sub>T</sub> quantifying µ<sub>eff</sub>’s modulation by E*<sub>T</sub> varies as ~(E*<sub>T</sub>)<sup>-5/3</sup> under laminar flow conditions, thereby further corroborating the foregoing effects and interpretations thereof.</div>

2021 ◽  
Author(s):  
F. Shoucair

<div>We formulate a simple, yet accurate, model for a non-uniform mobile charge density ρ(z) giving rise to a mean potential Ψ* across an inversion layer of finite extent, which we measure by means of a novel, sensitive, experimental method involving nulls of harmonic distortion components (D2 ≈ D3 ≈ 0) of the drain current under sinusoidal excitation below saturation. We thus establish analytically and experimentally, that the low-field, "universal" effective mobility µ<sub>eff</sub> varies as ~(E*<sub>T</sub>)<sup>-1/3 </sup>for transversal fields E<sub>T</sub>*= <b>-</b>(1/ε<sub>si</sub>)<b>·</b>[ɳQ<sub>i</sub> + Q<sub>b</sub>] <b>≤ </b>0.5 MV/cm, wherein ɳ varies continuously between 1/2 and 1/3. We also establish and observe that the higher order, derivative, parameter θ<sub>T</sub> quantifying µ<sub>eff</sub>’s modulation by E*<sub>T</sub> varies as ~(E*<sub>T</sub>)<sup>-5/3</sup> under laminar flow conditions, thereby further corroborating the foregoing effects and interpretations thereof.</div>


2021 ◽  
Author(s):  
F. Shoucair

The salient properties of charge flow (or current) along the MOSFET’s inversion layer are shown to be consilient with a river’s flow in a gravitational potential field, insofar as both are fundamentally governed by energy conservation principles, and their laminar and turbulent conditions determined by friction losses at shallow depths. We establish analytically that the low-field, "universal" effective mobility, μ<sub>eff </sub><b>, </b>long reported to vary as ~(E*<sub>T</sub>)<sup>-1/3</sup> for transversal fields below 0.5 MV/cm, is manifestation and consequence of both energy and momentum conservation under laminar flow conditions and quantum mechanical effects, in which case the inversion layer’s mean thickness also varies as ~(E*<sub>T</sub>)<sup>-1/3</sup> up to a maximum value E*<sub>T</sub> ≈ 0.35 MV/cm at 300K, determined only by interface "terrain" amplitude and fundamental constants.


2021 ◽  
Author(s):  
F. Shoucair

The salient properties of charge flow (or current) along the MOSFET’s inversion layer are shown to be consilient with a river’s flow in a gravitational potential field, insofar as both are fundamentally governed by energy conservation principles, and their laminar and turbulent conditions determined by friction losses at shallow depths. We establish analytically that the low-field, "universal" effective mobility, μ<sub>eff </sub><b>, </b>long reported to vary as ~(E*<sub>T</sub>)<sup>-1/3</sup> for transversal fields below 0.5 MV/cm, is manifestation and consequence of both energy and momentum conservation under laminar flow conditions and quantum mechanical effects, in which case the inversion layer’s mean thickness also varies as ~(E*<sub>T</sub>)<sup>-1/3</sup> up to a maximum value E*<sub>T</sub> ≈ 0.35 MV/cm at 300K, determined only by interface "terrain" amplitude and fundamental constants.


2021 ◽  
Author(s):  
F. Shoucair

The salient properties of charge flow (or current) along the MOSFET’s inversion layer are shown to be analogous to a river’s flow in a gravitational potential field, insofar as both are fundamentally governed by energy conservation principles, and their laminar and turbulent conditions determined by friction losses at shallow depths. We formulate an accurate model for a non–uniform mobile charge density giving rise to a mean potential<i> </i>across an inversion layer of finite extent<i>,</i> which we measure by a sensitive experimental method …


2021 ◽  
Author(s):  
F. Shoucair

The salient properties of charge flow (or current) along the MOSFET’s inversion layer are shown to be analogous to a river’s flow in a gravitational potential field, insofar as both are fundamentally governed by energy conservation principles, and their laminar and turbulent conditions determined by friction losses at shallow depths. We formulate an accurate model for a non–uniform mobile charge density giving rise to a mean potential<i> </i>across an inversion layer of finite extent<i>,</i> which we measure by a sensitive experimental method …


2020 ◽  
Vol 64 ◽  
pp. 115-122
Author(s):  
P. Vimala ◽  
N.R. Nithin Kumar

The paper introduces an analytical model for gate all around (GAA) or Surrounding Gate Metal Oxide Semiconductor Field Effect Transistor (SG-MOSFET) inclusive of quantum mechanical effects. The classical oxide capacitance is replaced by the capacitance incorporating quantum effects by including the centroid parameter. The quantum variant of inversion charge distribution function, inversion layer capacitance, drain current, and transconductance expressions are modeled by employing this model. The established analytical model results agree with the simulated results, verifying these models' validity and providing theoretical supports for designing and applying these novel devices.


2013 ◽  
Vol 12 (01) ◽  
pp. 1350005 ◽  
Author(s):  
VIMALA PALANICHAMY ◽  
N. B. BALAMURUGAN

An analytical model for double-gate (DG) MOSFETs considering quantum mechanical effects is proposed in this paper. Schrödinger and Poisson's equations are solved simultaneously using a variational approach. Solving the Poisson and Schrödinger equations simultaneously reveals quantum effects (QME) that influence the performance of DG MOSFETs. This model is developed to provide an analytical expression for inversion charge distribution function for all regions of device operation. This expression is used to calculate the other important parameters like inversion layer centroid, inversion charge, gate capacitance, drain current and transconductance. We systematically evaluate and analyze the parameters of DG MOSFETs considering QME. The analytical solutions are simple, accurate and provide good physical insight into the quantization caused by quantum confinement under various gate biases. The analytical results of this model are verified by comparing the data obtained with one-dimensional self-consistent numerical solutions of Poisson and Schrödinger equations known as SCHRED.


Sign in / Sign up

Export Citation Format

Share Document