scholarly journals Physical Origins of Universal Mobility in MOSFET Inversion Layers: Conservation Laws

Author(s):  
F. Shoucair

The salient properties of charge flow (or current) along the MOSFET’s inversion layer are shown to be consilient with a river’s flow in a gravitational potential field, insofar as both are fundamentally governed by energy conservation principles, and their laminar and turbulent conditions determined by friction losses at shallow depths. We establish analytically that the low-field, "universal" effective mobility, μ<sub>eff </sub><b>, </b>long reported to vary as ~(E*<sub>T</sub>)<sup>-1/3</sup> for transversal fields below 0.5 MV/cm, is manifestation and consequence of both energy and momentum conservation under laminar flow conditions and quantum mechanical effects, in which case the inversion layer’s mean thickness also varies as ~(E*<sub>T</sub>)<sup>-1/3</sup> up to a maximum value E*<sub>T</sub> ≈ 0.35 MV/cm at 300K, determined only by interface "terrain" amplitude and fundamental constants.

2021 ◽  
Author(s):  
F. Shoucair

The salient properties of charge flow (or current) along the MOSFET’s inversion layer are shown to be consilient with a river’s flow in a gravitational potential field, insofar as both are fundamentally governed by energy conservation principles, and their laminar and turbulent conditions determined by friction losses at shallow depths. We establish analytically that the low-field, "universal" effective mobility, μ<sub>eff </sub><b>, </b>long reported to vary as ~(E*<sub>T</sub>)<sup>-1/3</sup> for transversal fields below 0.5 MV/cm, is manifestation and consequence of both energy and momentum conservation under laminar flow conditions and quantum mechanical effects, in which case the inversion layer’s mean thickness also varies as ~(E*<sub>T</sub>)<sup>-1/3</sup> up to a maximum value E*<sub>T</sub> ≈ 0.35 MV/cm at 300K, determined only by interface "terrain" amplitude and fundamental constants.


2021 ◽  
Author(s):  
F. Shoucair

<div>We formulate a simple, yet accurate, model for a non-uniform mobile charge density ρ(z) giving rise to a mean potential Ψ* across an inversion layer of finite extent, which we measure by means of a novel, sensitive, experimental method involving nulls of harmonic distortion components (D2 ≈ D3 ≈ 0) of the drain current under sinusoidal excitation below saturation. We thus establish analytically and experimentally, that the low-field, "universal" effective mobility µ<sub>eff</sub> varies as ~(E*<sub>T</sub>)<sup>-1/3 </sup>for transversal fields E<sub>T</sub>*= <b>-</b>(1/ε<sub>si</sub>)<b>·</b>[ɳQ<sub>i</sub> + Q<sub>b</sub>] <b>≤ </b>0.5 MV/cm, wherein ɳ varies continuously between 1/2 and 1/3. We also establish and observe that the higher order, derivative, parameter θ<sub>T</sub> quantifying µ<sub>eff</sub>’s modulation by E*<sub>T</sub> varies as ~(E*<sub>T</sub>)<sup>-5/3</sup> under laminar flow conditions, thereby further corroborating the foregoing effects and interpretations thereof.</div>


2021 ◽  
Author(s):  
F. Shoucair

<div>We formulate a simple, yet accurate, model for a non-uniform mobile charge density ρ(z) giving rise to a mean potential Ψ* across an inversion layer of finite extent, which we measure by means of a novel, sensitive, experimental method involving nulls of harmonic distortion components (D2 ≈ D3 ≈ 0) of the drain current under sinusoidal excitation below saturation. We thus establish analytically and experimentally, that the low-field, "universal" effective mobility µ<sub>eff</sub> varies as ~(E*<sub>T</sub>)<sup>-1/3 </sup>for transversal fields E<sub>T</sub>*= <b>-</b>(1/ε<sub>si</sub>)<b>·</b>[ɳQ<sub>i</sub> + Q<sub>b</sub>] <b>≤ </b>0.5 MV/cm, wherein ɳ varies continuously between 1/2 and 1/3. We also establish and observe that the higher order, derivative, parameter θ<sub>T</sub> quantifying µ<sub>eff</sub>’s modulation by E*<sub>T</sub> varies as ~(E*<sub>T</sub>)<sup>-5/3</sup> under laminar flow conditions, thereby further corroborating the foregoing effects and interpretations thereof.</div>


Author(s):  
Abdulah K. Ambusaidi ◽  
Rahma M. Al Sabri

This study investigated the impact of teaching physics via modeling on theacquisition of energy and momentum conservation concepts. The sample consisted of 91 female students selected from 11th grade female students in two schools in Al-Dakhiliyah Governorate in Oman. The experimental group (n = 45) was taught via the modeling method, and the control group (n = 46) was taught using a traditional method. The study lasted six weeks during the second semester of the academic year 2013/2014. A teacher guide for teaching by models was designed and validated by a group of experts. To measure the acquisition of physics concepts, energy and momentum, an achievement test was used. The test consisted of 20 multiple-choice questions. Its reliability was measured by test-retest method (r = 0.79). The results revealed a statistically significant difference (p < .05) between the means of the experimental and control groups in favor of the experimental group. The study recommends that science teachers ought to use models and modeling in their teaching. Workshops to train supervisors, in-service teachers and pre-service teachers in the construction and development of scientific models need to be conducted


Author(s):  
Hossein Khalili Shayan ◽  
Javad Farhoudi ◽  
Alireza Vatankhah

Abstract Radial gates are common structures in irrigation projects. This paper presents some theoretical-based equations for explicit estimation of the discharge from the radial gate under free and submerged flow conditions using Energy and Momentum (E-M) principles. The proposed equations were calibrated using extensive experimental data collected from the literature and this study for three types of radial gates under free and submerged flow conditions. The submergence threshold of radial gates is concluded, based on the concepts of hydraulic jump and the intersection of free and submerged head-discharge curves. The results indicated that the error in estimating the discharge increases under transition ( − 2.5 ≤ Sr% ≤ + 2.5), gate lip (1 &lt; y0/w ≤ 2), and high submerged (yt/y0 ≥ 0.95) flow conditions. However, in these flow limit conditions, the discharge error can be considerably decreased by adjusting the tailwater depth to flow depth just after the gate and using the energy equation for the sections before and after the gate. The efficiency of the proposed methods was evaluated based on the data series from field measurements of radial gates in 29 check structures at irrigation canals in the United States and Iran. The results showed that the discharge could be estimated using the proposed equations in field conditions with acceptable accuracy.


2017 ◽  
Author(s):  
Andrzej Rybicki ◽  
Miroslaw Kielbowicz ◽  
Antoni Szczurek ◽  
Iwona Anna Sputowska

2014 ◽  
Vol 9 (1) ◽  
pp. 29-38
Author(s):  
Aleksandr Vaganov ◽  
Yuri Yermolaev ◽  
Gleb Kolosov ◽  
Aleksandr Kosinov ◽  
Aleksandra Panina ◽  
...  

The experimental results of high level fluctuation excitation by external Mach’s wave in the boundary layer of delta wing model with blunt leading edges at Mach numbers M = 2, 2.5, 4 are presented. The exitation areas and mass flow pulsation levels in the conditions of subsonic, sonic and supersonic leading edges have been defined. It was found that the maximum value of the pulsations is 12–15 % and varies only slightly from the flow conditions around of the delta wing


2020 ◽  
Vol 64 ◽  
pp. 115-122
Author(s):  
P. Vimala ◽  
N.R. Nithin Kumar

The paper introduces an analytical model for gate all around (GAA) or Surrounding Gate Metal Oxide Semiconductor Field Effect Transistor (SG-MOSFET) inclusive of quantum mechanical effects. The classical oxide capacitance is replaced by the capacitance incorporating quantum effects by including the centroid parameter. The quantum variant of inversion charge distribution function, inversion layer capacitance, drain current, and transconductance expressions are modeled by employing this model. The established analytical model results agree with the simulated results, verifying these models' validity and providing theoretical supports for designing and applying these novel devices.


Sign in / Sign up

Export Citation Format

Share Document