scholarly journals Design and Manufacturing of a New Prosthetic Foot

2021 ◽  
Vol 4 (2) ◽  
pp. 109-115
Author(s):  
Salsabil karim Mohammed

All prosthetic foot designs, adapted in common use, don't imitate the specific qualities of a typical human foot. The premise of this task is to explore current prosthetics so as to plan and assemble a more human like prosthesis. In attempted such a structure, the new prosthesis will show a more extensive scope of qualities than those showed in current prosthetic feet. In doing as such, the new prosthesis will give a closer portrayal of the capacities inalienable to an ordinary human foot. The qualities associated with ordinary strolling incorporate dorsiflexion foot test. The qualities showed in the produced new foot tried are contrasted with those of" SACH foot". The qualities showed by prostheses which compared well with those of a human foot were researched further. Another prosthetic foot is structured and made from composite random E-glass-polyester.  The premise of the new prosthetic plan consolidates current prosthetic structure components, such as, prosthetic materials and segments.  The scientific part presents the aftereffects of the static investigation by techniques, such as, mathematical strategies (Finite Element method FEM) and experimental methods. Thus the new foot was designed and dorsiflexion were measured. The new prosthetic foot has  a good characteristics when compared with the SACH foot, such as good dorsiflexion (7°-6.4°) respectively.Prosthetic foot

2020 ◽  
Vol 14 (2) ◽  
pp. 197-200
Author(s):  
Carlos Alberto Costa ◽  
Vinicius Victorazzi Lain ◽  
Alexandre Leme Godoy-Santos ◽  
Victor Gonçalvez de Antoni ◽  
Paulo Roberto Linzmaier ◽  
...  

The objective of this study is to evaluate the applicability of the finite element method to analyze pressure distribution in the healthy human foot. Images of a foot were captured using computed tomography and converted into a three-dimensional model, which was adjusted with the aid of CAD software. The model was imported into Abaqus software for finite element analysis, considering the different regions of the foot. Observations of displacement, stresses, and pressure distribution demonstrated a biomechanical behavior of the foot consistent with that reported in the existing literature, regarding the regions of peak plantar pressure. These findings demonstrate the feasibility of evaluating the physical and mechanical behavior of the human foot using the finite element method, and can serve as a reference for the study and manufacture of orthotic appliances, prosthetic devices, and insoles. Level of Evidence V; Prognostic Studies; Expert Opinion.


Author(s):  
Juan Alfonso Beltrán-Fernández ◽  
Luis Héctor Hernández-Gómez ◽  
Juan Luis Cuevas-Andrade ◽  
Jesús Eduardo Campa-Zuno ◽  
Alfredo de la Peña-Muñoz ◽  
...  

Author(s):  
Elvin B. Shields

Clamped-free (cantilever) beams have practical applications. For example, it is not possible to use normal means to determine the modulus of elasticity for thin films. However, the film material can be deposited onto the beam substrate by sputtering or by applying the additive manufacturing technique and thereby change the beam’s stiffness as suggested by Dias da Silva et al [1]. The stiffness change causes a shift in the natural frequencies of the vibration of the beam and this shift can be used to determine the material properties of the film. This study provides four methods of analysis: 1) formula calculation, which is used as the benchmark, 2) finite element method, 3) experimental method with accelerometer, and 4) experimental method with condenser microphone. Theoretical results are used as benchmarks and compared with the finite element method (FEM) and two experimental methods (accelerometer and condenser microphone). The challenge is to obtain results with the necessary accuracy (significant digits) at higher resonant frequencies of vibration. The two experimental methods were evaluated and the experimental method with condenser microphone showed the most promise for future work. Very little was found in the literature regarding the use of a condenser microphone to measure resonant frequencies.


2012 ◽  
Vol 472-475 ◽  
pp. 1582-1585
Author(s):  
Shan Lu ◽  
Jing Ping Liu

In this paper, the design of rigid roller was optimized with finite element method, and processing technology of rigid roller was improved. A new type of flexible roller structure has been designed, and investigated its processing technology, which have important guiding significance in real productivity.


Author(s):  
Ricardo L. Actis ◽  
Liliana B. Ventura ◽  
Barna A. Szabo ◽  
Kirk E. Smith ◽  
Paul K. Commean ◽  
...  

This paper summarizes the modeling work performed by our research group in the last year utilizing the p-version of the finite element method for the simulation of the mechanical behavior of the human foot in regard to the plantar pressure distribution during push-off.


Author(s):  
Paolo Nicola Camillo Girotti ◽  
Ingmar Königsrainer ◽  
Ugo Pastorino ◽  
Ambrogio Luigi Girotti ◽  
Francesco Rosa

Abstract OBJECTIVES Chest wall resections are most commonly performed for tumours, infection, radiation necrosis and trauma. Defects in the anterior chest greater than 5 cm, posterior defects more than 10 cm or resection including more than 3 ribs, independently of the location, require skeletal prosthetic reconstruction. The aim of this paper was to evaluate the strength of prostheses that reproduced the normal human anatomy using different materials subjected to the most dangerous loading conditions. METHODS The biomechanical behaviours of different prosthetic materials under critical rib fracture conditions were analysed using the finite element method and then validated through mechanical testing of 3-dimensional polymethylmethacrylate ribs as a prosthesis reproducing the native anatomy of the human ribcage. RESULTS The prosthetic materials and the polymethylmethacrylate prosthesis were tested under 3 load conditions: sternal load (an anterior–posterior load applied at the third rib); lateral load (strength applied at the lateral arch of the fifth rib) and vertical load (vertical load applied at the first sternocostal junction) and showed the same results in terms of failures compared to the results from the finite element method model simulation (same location and number of fractures were detected). Although the displacement error between the finite element method and experimental test was up to 5% overall, no other microcracking was observed. CONCLUSIONS This experimental study demonstrated that all prosthetic materials currently available for human use show optimal mechanical behaviour in term of resistance and organ protection. Specifically, polymethylmethacrylate was a good candidate as a prosthetic material in term of lightness, resistance and prosthetic weight.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document