scholarly journals Comparison of Properties of SA 213 T 12 Tube Weldments by GTAW, ATIG, P-GMAW and Alternating Shielding Gas GMAW

Author(s):  
RAJASEKARAN NAINIAPPAN ◽  
Santhakumari A ◽  
Raja Arasan
Keyword(s):  
2016 ◽  
Vol 58 (6) ◽  
pp. 489-494 ◽  
Author(s):  
Panyasak Phakpeetinan ◽  
Amnuysak Chianpairot ◽  
Ekkarut Viyanit ◽  
Fritz Hartung ◽  
Gobboon Lothongkum

Alloy Digest ◽  
1978 ◽  
Vol 27 (9) ◽  

Abstract UNIFLUX 70 is a continuous flux-cored welding electrode (wire) for welding in carbon dioxide shielding gas in the flat groove and horizontal fillet positions. It is used widely in shipbuilding and other fabricating industries to weld carbon steel and provides around 82,000 psi tensile strength and around 50 foot-pounds Charpy V-notch impact at 0 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: CS-74. Producer or source: Unicore Inc., United Nuclear Corporation.


Author(s):  
Mateus Barancelli Schwedersky ◽  
Álisson Fernandes da Rosa ◽  
Marcelo Pompermaier Okuyama ◽  
Régis Henrique Gonçalves e Silva

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Ruochen Ding ◽  
Jun Yao ◽  
Baorui Du ◽  
Kailun Li ◽  
Tao Li ◽  
...  

In recent years, selective laser melting (SLM) has been widely used in aerospace, automobile, biomedicine and other fields. However, there still remain many challenges to obtain consistent parts at the different positions on the base plate, which could be harmful to the industrial mass-production. In SLM process, the process by-products that flow with the shielding gas may influence the microstructure and tensile properties of the parts placed on different positions of the base plate. In this study, the velocity field of the shielding gas with different shielding gas volume flows was simulated. The tensile properties of the samples fabricated with different shielding gas volume flow were experimentally studied. The results show that the shielding gas volume flow has a strong influence on the sample consistency, and proper increase in shielding gas volume flows can be beneficial to consistency and tensile strength.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 524
Author(s):  
Maider Arana ◽  
Eneko Ukar ◽  
Iker Rodriguez ◽  
Amaia Iturrioz ◽  
Pedro Alvarez

With the advent of disruptive additive manufacturing (AM), there is an increasing interest and demand of high mechanical property aluminium parts built directly by these technologies. This has led to the need for continuous improvement of AM technologies and processes to obtain the best properties in aluminium samples and develop new alloys. This study has demonstrated that porosity can be reduced below 0.035% in area in Al-Mg samples manufactured by CMT-based WAAM with commercial filler metal wires by selecting the correct shielding gas, gas flow rate, and deposition strategy (hatching or circling). Three phase Ar+O2+N2O mixtures (Stargold®) are favourable when the hatching deposition strategy is applied leading to wall thickness around 6 mm. The application of circling strategy (torch movement with overlapped circles along the welding direction) enables the even build-up of layers with slightly thicker thickness (8 mm). In this case, Ar shielding gas can effectively reduce porosity if proper flow is provided through the torch. Reduced gas flows (lower than 30 Lmin) enhance porosity, especially in long tracks (longer than 90 mm) due to local heat accumulation. Surprisingly, rather high porosity levels (up to 2.86 area %) obtained in the worst conditions, had a reduced impact on the static tensile test mechanical properties, and yield stress over 110 MPa, tensile strength over 270 MPa, and elongation larger than 27% were achieved either for Ar circling, Ar hatching, or Stargold® hatching building conditions. In all cases anisotropy was lower than 11%, and this was reduced to 9% for the most appropriate shielding conditions. Current results show that due to the selected layer height and deposition parameters there was a complete re-melting of the previous layer and a thermal treatment on the prior bottom layer that refined the grain size removing the original dendritic and elongated structure. Under these conditions, the minimum reported anisotropy levels can be achieved.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2671
Author(s):  
Xin-Yu Zhang ◽  
Xiao-Qin Zha ◽  
Ling-Qing Gao ◽  
Peng-Hui Hei ◽  
Yong-Feng Ren

In the present study, the microstructures and properties of DSS 2205 solid wire MIG welded samples prepared in different shielding gases (pure Ar gas, 98%Ar + 2%O2 and 98%Ar + 2%N2) were investigated for improving the weldability of DSS 2205 welded joint. The work was conducted by mechanical property tests (hardness and tensile test) and corrosion resistance property tests (immersion and electrochemical tests). The results show that adding 2%O2 into pure Ar gas as the shielding gas decreases crystal defects (faults) and improves the mechanical properties and corrosion resistance of the welded joints. Phase equilibrium and microstructural homogeneity in welded seam (WS) and heat-affected zone (HAZ) can be adjusted and the strength and corrosion resistance of welded joints increased obviously by adding 2%N2 to pure Ar gas as the shielding gas. Compared with DSS 2205 solid wire MIG welding in 98%Ar + 2%O2 mixed atmosphere, the strength and corrosion resistance of welded joints are improved more obviously in 98%Ar + 2%N2 mixed atmosphere.


PRICM ◽  
2013 ◽  
pp. 2131-2137
Author(s):  
S.W. Campbell ◽  
A.M. Galloway ◽  
N.A. McPherson

2018 ◽  
Vol 216 ◽  
pp. 03001 ◽  
Author(s):  
Evgeny Ivanayskiy ◽  
Aleksei Ishkov ◽  
Aleksandr Ivanayskiy ◽  
Iakov Ochakovskii

The paper studies the influence of shielding gas on the composition and the structure of weld joint metal of 30MnB5 steel applied in essential parts of automobiles and tractors. The welding was performed in inert, oxidizing and reducing atmospheres. It was established that TIG welding with argon used as shielding gas did not provide the required mechanical properties when using conventional welding materials. Carbon dioxide during MAG welding caused partial burning of alloying elements. Carbon monoxide used as shielding gas was proved to form reducing atmosphere enabling to obtain chemical composition close to the base metal composition. Metallographic examinations were carried out. The obtained results provided full-strength weld, as well as the required reliability and durability of welded components and joints.


2006 ◽  
Vol 39 (3) ◽  
pp. 563-574 ◽  
Author(s):  
Antonio Ancona ◽  
Teresa Sibillano ◽  
Pietro Mario Lugarà ◽  
Giuseppe Gonnella ◽  
Giuseppe Pascazio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document