scholarly journals Real-World Experiences of CAR T-Cell Therapy for Large B-Cell Lymphoma: How Similar Are They to the Prospective Studies?

2021 ◽  
Vol 4 (3) ◽  
pp. 150-159
Author(s):  
Kevin Tang ◽  
Loretta J. Nastoupil

ABSTRACT Chimeric antigen receptor (CAR) T cell therapy has emerged as a revolutionary treatment option for highly aggressive B cell malignancies. Clinical trials of CD19 CAR T cells for the management of relapsed and/or refractory non-Hodgkin lymphoma (NHL) have shown markedly improved survival and response rates. The goal of this review is to evaluate whether the results from these clinical trials are reflective of real-world practices through the analysis of published literature of the commercially available CAR T cell products. We have found that despite the significantly different patient characteristics, the adverse events and response rates of real-world patients were similar to those of the clinical trials. Of interest, several groups excluded from the clinical trials, such as patients with HIV infection, chronic viral hepatitis, and secondary CNS (central nervous system) lymphoma, had case reports of promising outcomes.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Komal Adeel ◽  
Nathan J. Fergusson ◽  
Risa Shorr ◽  
Harold Atkins ◽  
Kevin A. Hay

Abstract Background Chimeric antigen receptor (CAR) T cell therapy has had great success in treating patients with relapsed or refractory B cell malignancies, with CD19-targeting therapies now approved in many countries. However, a subset of patients fails to respond or relapse after CD19 CAR T cell therapy, in part due to antigen loss, which has prompted the search for alternative antigen targets. CD22 is another antigen found on the surface of B cells. CARs targeting CD22 alone or in combination with other antigens have been investigated in several pre-clinical and clinical trials. Given the heterogeneity and small size of CAR T cell therapy clinical trials, systematic reviews are needed to evaluate their efficacy and safety. Here, we propose a systematic review of CAR T cell therapies targeting CD22, alone or in combination with other antigen targets, in B cell malignancies. Methods We will perform a systematic search of EMBASE, MEDLINE, Web of Science, Cochrane Register of Controlled Trials, clinicaltrials.gov, and the International Clinical Trials Registry Platform. Ongoing and completed clinical trials will be identified and cataloged. Interventional studies investigating CD22 CAR T cells, including various multi-antigen targeting approaches, in patients with relapsed or refractory B cell malignancies will be eligible for inclusion. Only full-text articles, conference abstracts, letters, and case reports will be considered. Our primary outcome will be a complete response, defined as absence of detectable cancer. Secondary outcomes will include adverse events, overall response, minimal residual disease, and relapse, among others. Quality assessment will be performed using a modified Institute of Health Economics tool designed for interventional single-arm studies. We will report a narrative synthesis of clinical studies, presented in tabular format. If appropriate, a meta-analysis will be performed using a random effects model to synthesize results. Discussion The results of the proposed review will help inform clinicians, patients, and other stakeholders of the risks and benefits of CD22 CAR T cell therapies. It will identify gaps or inconsistencies in outcome reporting and help to guide future clinical trials investigating CAR T cells. Systematic review registration PROSPERO registration number: CRD42020193027


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1952-1952 ◽  
Author(s):  
Ajeet Gajra ◽  
Marjorie E Zettler ◽  
Eli G Phillips Jr. ◽  
Andrew J Klink ◽  
Jonathan K. Kish ◽  
...  

Introduction: Neurotoxicity is a major adverse event (AE) of CAR-T therapy with diverse presentation. When severe, it can be fatal, and may lead to neurologic sequelae as well as contribute to increased health care utilization, driving up cost of therapy. In clinical trials, the most common neurologic AEs with axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tis-cel) included encephalopathy, headache, tremor, dizziness, aphasia, delirium, insomnia and anxiety. Fatal and serious cases of cerebral edema, leukoencephalopathy and/ or seizures have been reported with both agents. In this real-world analysis, we reviewed post-marketing case reports from the FDA Adverse Events Reporting System (FAERS). Database involving axi-cel or tis-cel for large B cell lymphoma (LBCL), with the dual objectives of characterizing the various components of neurotoxicity and assessing the association of neurological (neuro) AEs with demographic and treatment factors as well as with other AEs reported with CAR-T cell therapy use. Methods: The FAERS database contains anonymized reports of product-related AEs, classified using the Medical Dictionary for Regulatory Activities (MedDRA) and categorized as serious or non-serious. The FAERS database was queried for cases involving axi-cel or tis-cel (and their respective trade names) from the FDA approval date for the LBCL indication (October 18, 2017 for axi-cel; May 1, 2018 for tis-cel) through March 31, 2019. Cases were excluded if patient age was unknown or if the case was reported outside the US. Of all patients reported to have neuro AEs, the frequency of various components was collected. The association of neuro AEs with patient age, concomitant AEs and key lab abnormalities were evaluated by Fisher's exact test, using a two-sided α=0.05 to determine statistical significance. Median age in each subgroup was compared using the Mann-Whitney U test. Results: In the 397 case reports identified, the majority of reactions (376, 95%) were classified as serious. Overall, 258 (65%) were reported to have neuro AEs, with "neurotoxicity" reported in 170 cases (66%); encephalopathy including CAR-T cell-related, metabolic and toxic in 92 cases (36%); seizures including status epilepticus, myoclonus and partial seizures in 12 cases (5%); stroke including cerebrovascular accident, hemiparesis, basal ganglia, brain stem, cerebellar and cerebral infarcts, motor dysfunction, facial and cranial nerve paralysis in 13 cases (5%); speech disorders including terms of aphasia, dysarthria, speech and language impairment in 55 cases (21%); amnesia and memory impairment in 18 cases (7%); brain or spinal cord edema and increased intracranial pressure in 6 cases (2%). Peripheral neuropathy was reported in 5 cases (2%). Symptoms of headache, tremors, dizziness and somnolence were reported in 30 (12%), 41 (16%) 3 (1%) and 34 (13%) cases respectively. Confusional state, delirium or agitation were reported in 61 cases (24%). Neuro AEs were associated with use of axi-cel vs. tis-cel (69% vs. 24%, p <0.01) and with age ≥65 years (43% vs. 36% in age <65, p=0.02) but did not impact death or hospitalization (Table). Neuro AEs were associated with cytokine release syndrome (CRS, 67% vs. 49% without, p<0.01) as well as with cardiac AEs including tachycardia (p<0.01). There was an association of psychiatric AEs with neuro AEs though some (delirium, agitation, hallucination) may be considered a part of the neuro AEs. There were no associations of febrile neutropenia, thrombocytopenia, serum ferritin and C-reactive protein with neuro AEs (all p values>0.05). Conclusions: Neuro AEs were common with CAR-T cell therapy in the real world and largely resembled those reported in clinical trials. Neuro AEs were associated with the agent used, age ≥65 as well as the presence of CRS, cardiac and psychiatric AEs but not with any of the laboratory values studied. The limitations of this study include its retrospective nature, potential under-reporting to FAERS and the relatively small number of patients in the tis-cel group due to its later approval and shorter time available for uptake compared to axi-cel. Despite these limitations, our findings can serve to inform clinicians' decision making when treating adult patients with CAR-T cell therapy. Further research is needed to better discern the etiopathology and biomarkers of neuro AEs in CAR-T cell therapy. Disclosures Gajra: Cardinal Health: Employment. Zettler:Cardinal Health: Employment. Phillips Jr.:Cardinal Health: Employment. Klink:Cardinal Health: Employment. Kish:Cardinal Health: Employment. Mehta:Cardinal Health: Employment. Feinberg:Cardinal Health: Employment.


2020 ◽  
Vol 68 (5) ◽  
pp. 956-964 ◽  
Author(s):  
Shebli Atrash ◽  
Kulsum Bano ◽  
Bradley Harrison ◽  
Al-Ola Abdallah

Chimeric antigen receptor (CAR)-T-cell therapy has sparked a wave of optimism in hematological malignancies, reflected by the successful results of early clinical trials involving patients with pre-B-cell acute lymphoblastic leukemia, B-cell lymphomas and multiple myeloma. CAR-T-cell therapy is considered to be a novel immunotherapy treatment that has the potential for curing certain hematological cancers. However, as use of CAR-T-cell therapy has grown, new challenges have surfaced. These challenges include the process of manufacturing the CAR-T cells, the mechanisms of resistance that underlie disease relapse, adverse effects and cost. This review describes the published results of clinical trials and expected developments to overcome CAR-T resistance.


2020 ◽  
Author(s):  
Komal Adeel ◽  
Nathan Fergusson ◽  
Risa Shorr ◽  
Harry Atkins ◽  
Kevin Anthony Hay

Abstract Background: Chimeric antigen receptor (CAR) T-cell therapy has had great success in treating patients with relapsed or refractory B-cell malignancies, with CD19-targeting therapies now approved in many countries. However, a subset of patients fail to respond or relapse after CD19 CAR T-cell therapy, in part due to antigen loss, which has prompted the search for alternative antigen targets. CD22 is another antigen found on the surface of B-cells. CARs targeting CD22 alone or in combination with other antigens have been investigated in several pre-clinical and clinical trials.Given the heterogeneity and small size of CAR T-cell therapy clinical trials, systematic reviews are needed to evaluate their efficacy and safety. Here, we propose a systematic review of CAR T-cell therapies targeting CD22, alone or in combination with other antigen targets, in B-cell malignancies.Methods:We will perform a systematic search of EMBASE, MEDLINE, Web of Science, Cochrane Register of Controlled Trials, clinicaltrials.gov, and the International Clinical Trials Registry Platform. Ongoing and completed clinical trials will be identified and catalogued. Interventional studies investigating CD22 CAR T-cells, including various multi-antigen targeting approaches, in patients with relapsed or refractory B-cell malignancies will be eligible for inclusion. Only full-text articles, conferences abstracts, letters and case reports will be considered. Our primary outcome will be a complete response, defined as absence of detectable cancer. Secondary outcomes will include adverse events, overall response, minimal residual disease, and relapse, among others. Quality assessment will be performed using a modified Institute of Health Economics tool designed for interventional single-arm studies. We will report a narrative synthesis of clinical studies, presented in tabular format. If appropriate a meta-analysis will be performed using a random effects model to synthesize results.Discussion:The results of the proposed review will help inform clinicians, patients and other stakeholders of the risks and benefits of CD22 CAR T-cell therapies. It will identify gaps or inconsistencies in outcome reporting and help to guide future clinical trials investigating CAR T-cells.PROSPERO Registration Number: CRD42020193027.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5592
Author(s):  
Edit Porpaczy ◽  
Philipp Wohlfarth ◽  
Oliver Königsbrügge ◽  
Werner Rabitsch ◽  
Cathrin Skrabs ◽  
...  

Refractory/relapsed diffuse large B-cell lymphoma (DLBCL) is associated with poor outcome. The clinical behavior and genetic landscape of DLBCL is heterogeneous and still not fully understood. TP53 mutations in DLBCL have been identified as markers of poor prognosis and are often associated with therapeutic resistance. Chimeric antigen receptor T-cell therapy is an innovative therapeutic concept and represents a game-changing therapeutic option by supporting the patient’s own immune system to kill the tumor cells. We investigated the impact of TP53 mutations on the overall survival of refractory/relapsed DLBCL patients treated with comparable numbers of therapy lines. The minimum number of therapy lines was 2 (median 4), including either anti-CD19 CAR T-cell therapy or conventional salvage therapy. A total of 170 patients with DLBCL and high-grade B-cell lymphoma with MYC, BCL2, and/or BCL6 rearrangements (DHL/THL), diagnosed and treated in our hospital between 2000 and 2021, were included. Twenty-nine of them received CAR T-cell therapy. TP53 mutations were found in 10/29 (35%) and 31/141 (22%) of patients in the CAR T-cell and conventional groups, respectively. Among the 141 patients not treated with CAR T cells, TP53 mutation was an independent prognostic factor for overall survival (OS) (median 12 months with TP53 vs. not reached without TP53 mutation, p < 0.005), but in the CAR T cell treated group, this significance could not be shown (median OS 30 vs. 120 months, p = 0.263). The findings from this monocentric retrospective study indicate that TP53 mutation status does not seem to affect outcomes in DLBCL patients treated with CAR T-cell therapy. Detailed evaluation in large cohorts is warranted.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3871-3871
Author(s):  
Linde Dekker ◽  
Friso Calkoen ◽  
Yilin Jiang ◽  
Hilly Blok ◽  
Maike Spoon ◽  
...  

Abstract The addition of fludarabine to cyclophosphamide as lymphodepleting regimen prior to adoptive transfer of CD19 chimeric antigen receptor (CAR) T cells significantly improves CAR T cell expansion and correlates with longer B cell aplasia and a decreased probability of developing a CD19+ relapse (Gardner, 2017). Dosing of fludarabine is currently based on body surface area. We previously showed that this leads to a highly variable plasma exposure that correlates with clinical outcome after allogeneic hematopoietic cell transplantation (Langenhorst, 2019). We therefore hypothesized that optimal exposure of fludarabine might be of clinical importance in the CD19 CAR T setting. An observational cohort analysis was conducted with data from 26 consecutive patients receiving tisagenlecleucel as treatment for refractory/relapsed B cell acute lymphoblastic leukemia (B-ALL; table 1). Prior to CAR T cell infusion, patients received fludarabine on 4 consecutive days at a daily dosage of 30 mg/m 2 and cyclophosphamide on 2 consecutive days at a daily dosage of 500 mg/m 2. Fludarabine concentrations were measured longitudinally after fludarabine infusion using a liquid chromatography mass spectrometry method. The total exposure (Area Under the Curve (AUC 0−∞)) was subsequently determined using a fludarabine population pharmacokinetic model (Langenhorst, 2019). The study was performed in accordance with the Declaration of Helsinki. The primary outcome parameter was leukemia free survival, defined as the time between CAR19 T cell infusion and the moment of measurable leukemic blasts (&gt;5% or &gt;0.01% by two subsequent measurements). The effect of fludarabine on leukemia free survival and the secondary outcome measures CD19+ relapse and B cell aplasia were explored using martingale residuals and further identified by fitting univariable Cox Proportional Hazards models. In addition, Kaplan Meier and cumulative incidence curves were plotted and compared with log-rank tests. To compare CAR T cell numbers over time in peripheral blood, the AUCs were computed and compared between exposure groups with the Mann-Whitney test. Analyses were performed using R4.03 with packages pknca, survival and survminer. The fludarabine AUC 0−∞ was highly variable, resulting in a large range of 8.7-21.8 mg*h/L. Exposure of fludarabine was shown to be a predictor for leukemia free survival, B cell aplasia, and CD19+ relapse following CAR T cell infusion. Minimal event probability was observed at a cumulative fludarabine exposure ≥14 mg*h/L and underexposure was therefore defined as an AUC 0−∞ &lt;14 mg*h/L. In the underexposed group, leukemia free survival was lower (p&lt;0.001; Figure 1A) and the occurrence of CD19+ relapse was higher (p&lt;0.0001; figure 1B) compared to the group with an AUC 0−∞ ≥14 mg*h/L. Furthermore, the duration of B cell aplasia was shorter (p=0.009) and the AUCs of CAR T cell numbers lower (p=0.03) in the underexposed group. No significant differences in baseline characteristics were present between the two exposure groups. To our knowledge, this is the first study describing the effect of fludarabine exposure on outcome in a cohort of paediatric and young adults receiving CD19 CAR T cell therapy as treatment for B-ALL. These preliminary results suggest that optimizing fludarabine exposure may have a relevant impact on leukemia free survival following CAR T cell therapy. However, it should be noted that multivariate regression models are needed to show consistency of the relationship between fludarabine exposure and outcome. The limited number of patients did not allow for inclusion of potential covariates that may influence clinical outcome into the analysis. Therefore, our results need to be confirmed in a larger cohort. In conclusion, clinical outcome in patients receiving CAR19 T cell therapy might be improved by the optimization of fludarabine exposure in the lymphodepleting regimen. LD and FC contributed equally to this study. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-23
Author(s):  
Tanya Siddiqi ◽  
Ulrich Jaeger ◽  
Olga Moshkovich ◽  
Jennifer Devlen ◽  
Matthew Miera ◽  
...  

Background: Chimeric antigen receptor (CAR) T cell therapy is a novel treatment modality for patients with R/R LBCL. Limited information exists regarding patients' views of CAR T cell therapy. Our research aimed to better understand patients' needs by capturing their expectations/concerns, current well-being, and treatment experiences during the beginning stages of CAR T cell therapy in the clinical trial setting. Methods: Patients with R/R LBCL from 2 ongoing trials of the investigational, CD19-directed CAR T cell therapy liso-cel (TRANSCEND WORLD [NCT03484702] or PLATFORM [NCT03310619]) were invited to participate in an optional interview component. Semistructured interviews were conducted to gain insight about patients' experience with CAR T cell therapy in the clinical trials. Interviews of ≤1 hour (in-person or over the phone) were conducted in parallel with screening procedures (interview 1), after leukapheresis (interview 2), and up to 3 days after liso-cel infusion (interview 3). Interviews were audio recorded and transcribed. MAXQDA (VERBI GmbH, Berlin, Germany) qualitative analysis software was used to manage and thematically organize interview transcript data to identify key concepts related to each research objective. Previously reported results of interview 1 showed a high perception of unmet needs, lack of alternative options, and expectations for positive outcomes. The analysis presented here primarily focused on interviews 2 and 3. Denominators shown in the Results vary by question as some patients skipped questions. Results: A total of 75 interviews were analyzed, including 35, 24, and 16 patients at interviews 1, 2, and 3, respectively, across sites in the US (n = 14), Europe (n = 26), and Japan (n = 2). Among 42 patients who completed ≥1 interview, the mean age was 62 years and 69% were male. Treatment Experience: Of 24 patients who completed interview 2, 22 (92%) reported positive experiences during leukapheresis and 16 (67%) reported the procedure was as expected. Patients thought the most difficult part of leukapheresis was the length of the procedure (n = 8/21 [38%]). Of 15 patients who provided feedback on lymphodepleting chemotherapy, a majority reported that it was as expected (n = 8 [53%]) or easier than expected (n = 3 [20%]); when asked about the most difficult part, many patients (n = 7/17 [41%]) discussed side effects (eg, nausea, fatigue, and lack of appetite). Of patients who described liso-cel infusion as different than expected, differences included easier (n = 12/13 [92%]) or quicker (n = 3/12 [25%]) than expected, and 5/12 (42%) reported few/no side effects within 3 days post-infusion. Over half of patients (n = 8/14 [57%]) reported that the infusion, as a whole, was not difficult. Changes over Time: At interviews 1, 2, and 3, respectively, 47% (n = 14/30), 47% (n = 9/19), and 69% (n = 9/13) of patients reported hoping for successful treatment. Similarly, patients generally had fewer concerns later in the process, with 21 (64%) and 11 (33%) of 33 patients reporting side-effect and treatment efficacy concerns, respectively, during interview 1 vs 5 (33%) and 3 (20%) of 15 patients, respectively, during interview 3. At time of enrollment, most patients (n = 21/34 [62%]) were able to function normally or with minimal impact from their lymphoma, although most reported some symptoms like fatigue, pain, or stomach problems. At interview 1, 14 (40%) of 35 patients were employed; most patients reported no changes in their work life at interviews 2 (n = 19/20 [95%]) and 3 (n = 11/12 [92%]). From enrollment to immediately post-infusion, the physical health of most patients remained stable (n = 4/16 [25%]) or deteriorated (n = 9/16 [56%]). However, most patients (n = 14/15 [93%]) reported feeling positive at interview 3. Conclusions: This study provided the unique opportunity to gather feedback directly from patients participating in clinical trials of liso-cel therapy, specifically during the initial treatment stages. The overall impression of the treatment was positive, with most patients reporting that study procedures were easier than expected. The results of this qualitative research provide useful insight into the motivations, expectations, and experiences of patients with R/R LBCL receiving liso-cel therapy, which can inform the design of health care support systems and future clinical trials to better meet patients' needs. Disclosures Siddiqi: AstraZeneca: Consultancy, Research Funding, Speakers Bureau; Pharmacyclics: Consultancy, Research Funding, Speakers Bureau; Celgene: Consultancy, Research Funding; Juno: Consultancy, Research Funding; Kite, a Gilead Company: Consultancy, Research Funding; BeiGene: Consultancy, Research Funding; Oncternal: Research Funding; TG Therapeutics: Research Funding; Janssen: Speakers Bureau; Seattle Genetics: Speakers Bureau. Jaeger:F. Hoffmann-La Roche: Honoraria, Research Funding; AbbVie: Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Gilead: Honoraria, Research Funding; BMS/Celgene: Consultancy, Honoraria, Research Funding; Karyopharm: Honoraria; CDR Life AG: Consultancy, Research Funding; Miltenyi: Consultancy, Honoraria. Moshkovich:Icon Plc: Current Employment. Devlen:Icon Plc: Current Employment, Current equity holder in publicly-traded company. Miera:Icon Plc: Current Employment. Williams:Icon Plc: Current Employment. Hasskarl:Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Liu:Bristol-Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Braverman:Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Salles:MorphoSys: Consultancy, Honoraria, Other; Kite: Consultancy, Honoraria, Other; Debiopharm: Consultancy; Novartis: Consultancy, Honoraria, Other; Janssen: Consultancy, Honoraria, Other: Participation in educational events; Gilead: Consultancy, Honoraria, Other: Participation in educational events; F. Hoffman-La Roche Ltd: Consultancy, Honoraria, Other; Epizyme: Consultancy; Takeda: Consultancy, Honoraria, Other; Bristol Myers Squibb: Consultancy, Other; Karyopharm: Consultancy; Amgen: Honoraria, Other: Participation in educational events; Celgene: Consultancy, Honoraria, Other: Participation in educational events; Abbvie: Consultancy, Honoraria, Other: Participation in educational events; Autolus: Consultancy; Genmab: Consultancy.


2020 ◽  
Vol 12 ◽  
pp. 175883592096657
Author(s):  
Weijia Wu ◽  
Yan Huo ◽  
Xueying Ding ◽  
Yuhong Zhou ◽  
Shengying Gu ◽  
...  

Aims: Within the past few years, there has been tremendous growth in clinical trials of chimeric antigen receptor (CAR) T-cell therapies. Unlike those of many small-molecule pharmaceuticals, CAR T-cell therapy clinical trials are fraught with risks due to the use of live cell products. The aim of this study is to reach a consensus with experts on the most relevant set of risks that practically occur in CAR T-cell therapy clinical trials. Methods: A Delphi method of consensus development was used to identify the risks in CAR T-cell therapy clinical trials, comprising three survey rounds. The expert panel consisted of principal investigators, clinical research physicians, members of institutional ethics committees, and Good Clinical Practice managers. Results: Of the 24 experts invited to participate in this Delphi study, 20 participants completed Round 1, Round 2, and Round 3. Finally, consensus (defined as >80% agreement) was achieved for 54 risks relating to CAR T-cell clinical trials. Effective interventions related to these risks are needed to ensure the proper protection of subject health and safety. Conclusion: The Delphi method was successful in gaining a consensus on risks relevant to CAR T-cell clinical trials in a geographically diverse expert association. It is hoped that this work can benefit future risk-based quality management in clinical trials and can potentially promote the better development of CAR T-cell therapy products.


Sign in / Sign up

Export Citation Format

Share Document