Ingeniería termodinámica. Ecuación de estado térmica de fluidos mediante experimentación / Engineering thermodynamics. Thermal equation of fluids by experimentation / Ingénierie thermodynamique. Équation d'etat thermique par l'expérimentation.

2021 ◽  
Author(s):  
Natalia Muñoz-Rujas ◽  
Gabriel Rubio Pérez ◽  
Mohamed Lifi ◽  
Fatima E. M’Hamdi Alaou ◽  
Eduardo A. Montero
Keyword(s):  

En muchas industrias se emplean fluidos en los procesos de producción. Estos fluidos, sean líquidos, gases o mezclas de ambos, se almacenan en depósitos y se transportan por conductos en las instalaciones industriales. El volumen que cada kilogramo de fluido ocupa en estas instalaciones puede variar si también lo hacen su presión y temperatura. Encontrar esta interdependencia entre presión, volumen y temperatura resulta crucial para dimensionar depósitos y conductos. Conocer la relación matemática que expresa la interdependencia física de estas tres propiedades es esencial en ingeniería. En este libro veremos de modo experimental la interdependencia que presentan las propiedades presión, volumen y temperatura en fluidos. Lo haremos a través un caso práctico. En este libro mostraremos: 1) la dependencia mutua de las variables de estado presión-volumen-temperatura (PVT) para el fluido contenido en un volumen variable al modificar la presión y la temperatura. 2 ) la distinción de las propiedades de un fluido en las diferentes zonas de operación. 3 ) la obtención de la curva de vaporización presión-temperatura (P-T) y el diagrama presión-volumen (P-V) de un fluido.

2002 ◽  
Vol 7 (11) ◽  
pp. 585-599 ◽  
Author(s):  
Assia Benabdallah ◽  
Maria Grazia Naso

Thermoelastic plate model with a control term in the thermal equation is considered. The main result in this paper is that with thermal control, locally distributed within the interior and square integrable in time and space, any finite energy solution can be driven to zero at the control timeT.


2014 ◽  
Vol 70 (a1) ◽  
pp. C397-C397
Author(s):  
Guoyin Shen ◽  
Stanislav Sinogeikin ◽  
Jesse Smith

Phase transformation pathways are strongly influenced by the time dependence of the driving mechanism (compression, thermal transfer, strain, irradiation, etc). While thermal rate has been widely used for centuries for enhancing materials properties such as hardened steels or metallic glasses through rapid cooling, the application of compression rate is relatively new. Yet it drives rich new physics, novel chemistry, exceptional energy materials, and new routes of materials synthesis, and has become an important impetus in studying materials metastability, phase growth, and transition kinetics. In this talk, we will outline recently developed capabilities at HPCAT at the Advanced Photon Source for studying materials behavior under fast compression or decompression, including both single event loading or unloading and multiple, repetitive ramping events. A few recent studies will be highlighted. For example, a compression rate of 17 TPa per second has been reached in a piezo-driven diamond anvil cell; fast compression experiments significantly improve the precision in thermal equation of state determinations; the feasibility of controlled formation of metastable phases of Si and Ge has been demonstrated under controlled decompression rate; the phase transition kinetics of B1-B2 transitions in NaCl and KCl have been studied under various compression and decompression rates.


2009 ◽  
Vol 83 (5) ◽  
pp. 818-821 ◽  
Author(s):  
I. V. Vorotyntsev ◽  
T. V. Gamayunova

2005 ◽  
Vol 66 (5) ◽  
pp. 706-710 ◽  
Author(s):  
G.A. Voronin ◽  
C. Pantea ◽  
T.W. Zerda ◽  
L. Wang ◽  
Y. Zhao

2007 ◽  
Vol 164 (3-4) ◽  
pp. 142-160 ◽  
Author(s):  
Konstantin D. Litasov ◽  
Eiji Ohtani ◽  
Sujoy Ghosh ◽  
Yu Nishihara ◽  
Akio Suzuki ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 212
Author(s):  
Richard L. Rowland ◽  
Barbara Lavina ◽  
Kathleen E. Vander Kaaden ◽  
Lisa R. Danielson ◽  
Pamela C. Burnley

Understanding basic material properties of rare earth element (REE) bearing minerals such as their phase stability and equations of state can assist in understanding how economically viable deposits might form. Bastnäsite is the most commonly mined REE bearing mineral. We synthesized the lanthanum-fluoride end member, bastnäsite-(La) (LaCO3F), and investigated its thermal behavior and decomposition products from 298 K to 1173 K under ambient pressure conditions through thermogravimetric analysis, differential scanning calorimetry, evolved gas analysis, and high temperature powder X-ray diffraction. We also investigated the compressibility of bastnäsite-(La) via single crystal X-ray diffraction in diamond anvil cells at an ambient temperature up to 11.3 GPa and from 4.9 GPa to 7.7 GPa up to 673 K. At ambient pressure, bastnäsite-(La) was stable up to 598 K in air, where it decomposed into CO2 and tetragonal γ-LaOF. Above 948 K, cubic α-LaOF is stable. High temperature X-ray diffraction data were used to fit the Fei thermal equation of state and the thermal expansion coefficient α298 for all three materials. Bastnäsite-(La) was fit from 298 K to 723 K with V0 = 439.82 Å3, α298 = 4.32 × 10−5 K−1, a0 = −1.68 × 10−5 K−1, a1 = 8.34 × 10−8 K−1, and a2 = 3.126 K−1. Tetragonal γ-LaOF was fit from 723 K to 948 K with V0 = 96.51 Å3, α298 = 2.95×10−4 K−1, a0 = −2.41×10−5 K−1, a1 = 2.42×10−7 K−1, and a2 = 41.147 K−1. Cubic α-LaOF was fit from 973 K to 1123 K with V0 = 190.71 Å3, α298 = −1.12×10−5 K−1, a0 = 2.36×10−4 K−1, a1 = −1.73 × 10−7 K−1, and a2 = −17.362 K−1. An ambient temperature third order Birch–Murnaghan equation of state was fit with V0 = 439.82 Å3, K0 = 105 GPa, and K’ = 5.58.


2019 ◽  
Vol 46 (20) ◽  
pp. 11018-11024 ◽  
Author(s):  
Xiaojun Hu ◽  
Yingwei Fei ◽  
Jing Yang ◽  
Yang Cai ◽  
Shijia Ye ◽  
...  

2008 ◽  
Vol 15 (3) ◽  
pp. 359-368 ◽  
Author(s):  
A. B. Kaplun ◽  
B. I. Kidyarov ◽  
A. B. Meshalkin ◽  
A. V. Shishkin

Sign in / Sign up

Export Citation Format

Share Document