scholarly journals Performance Evaluation of Caps-Net Based Multitask Learning Architecture for Text Classification

Author(s):  
Dr. I. Jeena Jacob

The classification of the text involving the process of identification and categorization of text is a tedious and a challenging task too. The Capsules Network (Caps-Net) which is a unique architecture with the capability to confiscate the basic attributes comprising the insights of the particular field that could help in bridging the knowledge gap existing between the source and the destination tasks and capability learn more robust representation than the CNN-Convolutional neural networks in the image classification domain is utilized in the paper to classify the text. As the multi –task learning capability enables to part insights between the tasks that are related and enhances data used in training indirectly, the Caps-Net based multi task learning frame work is proposed in the paper. The proposed architecture including the Caps-Net effectively classifies the text and minimizes the interference experienced among the multiple tasks in the multi –task learning. The architecture put forward is evaluated using various text classification dataset ensuring the efficacy of the proffered frame work

2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Author(s):  
Ravi Kauthale

Abstract: The aim here is to explore the methods to automate the labelling of the information that is present in bug trackers and client support systems. This is majorly based on the classification of the content depending on some criteria e.g., priority or product area. Labelling of the tickets is important as it helps in effective and efficient handling of the ticket and help is quicker and comprehensive resolution of the tickets. The main goal of the project is to analyze the existing methodologies used for automated labelling and then use a newer approach and compare the results. The existing methodologies are the ones which are based of the neural networks and without neural networks. In this project, a newer approach based on the recurrent neural networks which are based on the hierarchical attention paradigm will be used. Keywords: Automate Labeling, Recurrent Neural Networks, Hierarchical Attention, Multi-class Text Classification, GRU


2018 ◽  
Vol 24 (2) ◽  
pp. 1382-1387 ◽  
Author(s):  
Syaifulnizam Abd Manaf ◽  
Norwati Mustapha ◽  
Md. Nasir Sulaiman ◽  
Nor Azura Husin ◽  
Mohd Radzi Abdul Hamid

2021 ◽  
Author(s):  
Rajagopal T K P ◽  
Sakthi G ◽  
Prakash J

Abstract Hyperspectral remote sensing based image classification is found to be a very widely used method employed for scene analysis that is from a remote sensing data which is of a high spatial resolution. Classification is a critical task in the processing of remote sensing. On the basis of the fact that there are different materials with reflections in a particular spectral band, all the traditional pixel-wise classifiers both identify and also classify all materials on the basis of their spectral curves (or pixels). Owing to the dimensionality of the remote sensing data of high spatial resolution along with a limited number of labelled samples, a remote sensing image of a high spatial resolution tends to suffer from something known as the Hughes phenomenon which can pose a serious problem. In order to overcome such a small-sample problem, there are several methods of learning like the Support Vector Machine (SVM) along with the other methods that are kernel based and these were introduced recently for a remote sensing classification of the image and this has shown a good performance. For the purpose of this work, an SVM along with Radial Basis Function (RBF) method was proposed. But, a feature learning approach for the classification of the hyperspectral image is based on the Convolutional Neural Networks (CNNs). The results of the experiment that were based on various image datasets that were hyperspectral which implies that the method proposed will be able to achieve a better performance of classification compared to other traditional methods like the SVM and the RBF kernel and also all conventional methods based on deep learning (CNN).


2021 ◽  
Vol 5 (3) ◽  
pp. 584-593
Author(s):  
Naufal Hilmiaji ◽  
Kemas Muslim Lhaksmana ◽  
Mahendra Dwifebri Purbolaksono

especially with the advancement of deep learning methods for text classification. Despite some effort to identify emotion on Indonesian tweets, its performance evaluation results have not achieved acceptable numbers. To solve this problem, this paper implements a classification model using a convolutional neural network (CNN), which has demonstrated expected performance in text classification. To easily compare with the previous research, this classification is performed on the same dataset, which consists of 4,403 tweets in Indonesian that were labeled using five different emotion classes: anger, fear, joy, love, and sadness. The performance evaluation results achieve the precision, recall, and F1-score at respectively 90.1%, 90.3%, and 90.2%, while the highest accuracy achieves 89.8%. These results outperform previous research that classifies the same classification on the same dataset.


2020 ◽  
Author(s):  
Harshvardhan Sikka

One of the popular directions in Deep Learning (DL) research has been to build larger and more complex deep networks that can perform well on several different learning tasks, commonly known as multitask learning. This work is usually done within specific domains, e.g. multitask models that perform captioning, translation, and text classification tasks. Some work has been done in building multimodal/crossmodal networks that use deep networks with a combination of different neural network primitives (Convolutional Layers, Recurrent Layers, Mixture of Expert layers, etc). This paper explores various topics and ideas that may prove relevant to large, sparse, multitask networks and explores the potential for a general approach to building and managing these networks. A framework to automatically build, update, and interpret modular LSMNs is presented in the context of current tooling and theory.


Sign in / Sign up

Export Citation Format

Share Document