scholarly journals RECONHECIMENTO DE ESTADOS DOS OLHOS UTILIZANDO MÁQUINAS DE APRENDIZADO PROFUNDO A PARTIR DE ONDAS CEREBRAIS

2019 ◽  
Vol 9 (1) ◽  
pp. 41-57 ◽  

The brain-computer interface is one of the emerging fields of human-computer interaction due to its broad spectrum of applications, especially those that deal with human cognition. In this work, electroencephalography (EEG) is used as base data for classifying the state of the eyes (open or closed) by applying Long Short-Term Memory (LSTM) networks and variants. For benchmarking purposes, the EEG data set with the eye state record was used, available in the Machine Learning repository at UCI. The results obtained indicated that the LSTM and GRU bidirectional cells models are applicable to the classification of the data, presenting an accuracy greater than 95%, and that its performance is good compared to the more expensive models computationally.

Author(s):  
Chenchao Zhou ◽  
Qun Chen ◽  
Zhanhuai Li ◽  
Bo Zhao ◽  
Yongjun Xu ◽  
...  

Online reviews play an increasingly important role in users' purchase decisions. E-commerce websites provide massive user reviews, but it is hard for individuals to make full use of the information. Therefore, it is an urgent task to classify, analyze and summarize the massive comments. In this paper, a model based on attention mechanism and bi-directional long short-term memory (BLSTM) is used to identify the categories of these review objects for the classification of the reviews. The model first uses BLSTM to train the review in the form of word vectors; then according to the part-of-speech, the output vectors of the BLSTM are given corresponding weights. The weights as prior knowledge can guide the learning of attention mechanism to enhance the classification accuracy; finally, the attention mechanism is used to capture category-related important features which are used for category determination. Experiments on the SemEval data set show that our model outperforms the state-of-the-art methods on aspect category detection.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pei Pan ◽  
Yijin Chen

Abstract Public messages on the Internet political inquiry platform rely on manual classification, which has the problems of heavy workload, low efficiency, and high error rate. A Bi-directional long short-term memory (Bi-LSTM) network model based on attention mechanism was proposed in this paper to realize the automatic classification of public messages. Considering the network political inquiry data set provided by the BdRace platform as samples, the Bi-LSTM algorithm is used to strengthen the correlation between the messages before and after the training process, and the semantic attention to important text features is strengthened in combination with the characteristics of attention mechanism. Feature weights are integrated through the full connection layer to carry out classification calculations. The experimental results show that the F1 value of the message classification model proposed here reaches 0.886 and 0.862, respectively, in the data set of long text and short text. Compared with three algorithms of long short-term memory (LSTM), logistic regression, and naive Bayesian, the Bi-LSTM model can achieve better results in the automatic classification of public message subjects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tuan D. Pham

AbstractImage analysis in histopathology provides insights into the microscopic examination of tissue for disease diagnosis, prognosis, and biomarker discovery. Particularly for cancer research, precise classification of histopathological images is the ultimate objective of the image analysis. Here, the time-frequency time-space long short-term memory network (TF-TS LSTM) developed for classification of time series is applied for classifying histopathological images. The deep learning is empowered by the use of sequential time-frequency and time-space features extracted from the images. Furthermore, unlike conventional classification practice, a strategy for class modeling is designed to leverage the learning power of the TF-TS LSTM. Tests on several datasets of histopathological images of haematoxylin-and-eosin and immunohistochemistry stains demonstrate the strong capability of the artificial intelligence (AI)-based approach for producing very accurate classification results. The proposed approach has the potential to be an AI tool for robust classification of histopathological images.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaofei Zhang ◽  
Tao Wang ◽  
Qi Xiong ◽  
Yina Guo

Imagery-based brain-computer interfaces (BCIs) aim to decode different neural activities into control signals by identifying and classifying various natural commands from electroencephalogram (EEG) patterns and then control corresponding equipment. However, several traditional BCI recognition algorithms have the “one person, one model” issue, where the convergence of the recognition model’s training process is complicated. In this study, a new BCI model with a Dense long short-term memory (Dense-LSTM) algorithm is proposed, which combines the event-related desynchronization (ERD) and the event-related synchronization (ERS) of the imagery-based BCI; model training and testing were conducted with its own data set. Furthermore, a new experimental platform was built to decode the neural activity of different subjects in a static state. Experimental evaluation of the proposed recognition algorithm presents an accuracy of 91.56%, which resolves the “one person one model” issue along with the difficulty of convergence in the training process.


2021 ◽  
Vol 3 ◽  
Author(s):  
Yueling Ma ◽  
Carsten Montzka ◽  
Bagher Bayat ◽  
Stefan Kollet

The lack of high-quality continental-scale groundwater table depth observations necessitates developing an indirect method to produce reliable estimation for water table depth anomalies (wtda) over Europe to facilitate European groundwater management under drought conditions. Long Short-Term Memory (LSTM) networks are a deep learning technology to exploit long-short-term dependencies in the input-output relationship, which have been observed in the response of groundwater dynamics to atmospheric and land surface processes. Here, we introduced different input variables including precipitation anomalies (pra), which is the most common proxy of wtda, for the networks to arrive at improved wtda estimates at individual pixels over Europe in various experiments. All input and target data involved in this study were obtained from the simulated TSMP-G2A data set. We performed wavelet coherence analysis to gain a comprehensive understanding of the contributions of different input variable combinations to wtda estimates. Based on the different experiments, we derived an indirect method utilizing LSTM networks with pra and soil moisture anomaly (θa) as input, which achieved the optimal network performance. The regional medians of test R2 scores and RMSEs obtained by the method in the areas with wtd ≤ 3.0 m were 76–95% and 0.17–0.30, respectively, constituting a 20–66% increase in median R2 and a 0.19–0.30 decrease in median RMSEs compared to the LSTM networks only with pra as input. Our results show that introducing θa significantly improved the performance of the trained networks to predict wtda, indicating the substantial contribution of θa to explain groundwater anomalies. Also, the European wtda map reproduced by the method had good agreement with that derived from the TSMP-G2A data set with respect to drought severity, successfully detecting ~41% of strong drought events (wtda ≥ 1.5) and ~29% of extreme drought events (wtda ≥ 2) in August 2015. The study emphasizes the importance to combine soil moisture information with precipitation information in quantifying or predicting groundwater anomalies. In the future, the indirect method derived in this study can be transferred to real-time monitoring of groundwater drought at the continental scale using remotely sensed soil moisture and precipitation observations or respective information from weather prediction models.


2021 ◽  
Vol 17 (12) ◽  
pp. 155014772110612
Author(s):  
Zhengqiang Ge ◽  
Xinyu Liu ◽  
Qiang Li ◽  
Yu Li ◽  
Dong Guo

To significantly protect the user’s privacy and prevent the user’s preference disclosure from leading to malicious entrapment, we present a combination of the recommendation algorithm and the privacy protection mechanism. In this article, we present a privacy recommendation algorithm, PrivItem2Vec, and the concept of the recommended-internet of things, which is a privacy recommendation algorithm, consisting of user’s information, devices, and items. Recommended-internet of things uses bidirectional long short-term memory, based on item2vec, which improves algorithm time series and the recommended accuracy. In addition, we reconstructed the data set in conjunction with the Paillier algorithm. The data on the server are encrypted and embedded, which reduces the readability of the data and ensures the data’s security to a certain extent. Experiments show that our algorithm is superior to other works in terms of recommended accuracy and efficiency.


Author(s):  
Preethi D. ◽  
Neelu Khare

This chapter presents an ensemble-based feature selection with long short-term memory (LSTM) model. A deep recurrent learning model is proposed for classifying network intrusion. This model uses ensemble-based feature selection (EFS) for selecting the appropriate features from the dataset and long short-term memory for the classification of network intrusions. The EFS combines five feature selection techniques, namely information gain, gain ratio, chi-square, correlation-based feature selection, and symmetric uncertainty-based feature selection. The experiments were conducted using the standard benchmark NSL-KDD dataset and implemented using tensor flow and python. The proposed model is evaluated using the classification performance metrics and also compared with all the 41 features without any feature selection as well as with each individual feature selection technique and classified using LSTM. The performance study showed that the proposed model performs better, with 99.8% accuracy, with a higher detection and lower false alarm rates.


Sign in / Sign up

Export Citation Format

Share Document