scholarly journals Modern concepts of the role of transient receptor potential channel vanilloid subfamily (TRPV) in development osmotic airway hyperresponsiveness in asthma patients (review)

Author(s):  
O. O. Kotova

Introduction. Airway hyperresponsiveness to osmotic stimuli is often found among patients with asthma. It is assumed that the transient receptor potential channels of vanilloid subfamily (TRPV) may play a key role in the onset of this phenomenon.Aim. Review of modern world literature data on osmotic airway hyperresponsiveness and the role of TRPV channels in its development.Materials and methods. This review summarizes the data from articles published over the past five years found in PubMed and Google Scholar. However, earlier publications were also included if necessary.Results. The influence of natural osmotic triggers on the formation of bronchoconstriction in patients with asthma has been demonstrated. The effects that occur in the airways, depending on the functional state of TRPV1, TRPV2 and TRPV4 osmosensitive receptors are described, and the mechanisms that mediate the development of bronchial hyperresponsiveness with the participation of these channels are partially disclosed.Conclusion. It is safe to assume that TRPV channels are directly or indirectly associated with airway hyperresponsiveness to osmotic stimuli. Signaling cascades triggered by TRPV activation largely explain the effects of osmotic influence on the airways and the occurrence of bronchoconstriction. It could be suggested that TRPV1 signaling mediates the development of bronchospasm to hyperosmolar stimuli, while TRPV2 and TRPV4 are most likely involved in hypoosmotic-induced bronchoconstriction. Further study of the role of TRPV1, TRPV2 and TRPV4 in osmotic airway hyperresponsiveness is relevant and promising in terms of pharmacological management of this condition.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 334
Author(s):  
Huilong Luo ◽  
Xavier Declèves ◽  
Salvatore Cisternino

The gliovascular unit (GVU) is composed of the brain microvascular endothelial cells forming blood–brain barrier and the neighboring surrounding “mural” cells (e.g., pericytes) and astrocytes. Modulation of the GVU/BBB features could be observed in a variety of vascular, immunologic, neuro-psychiatric diseases, and cancers, which can disrupt the brain homeostasis. Ca2+ dynamics have been regarded as a major factor in determining BBB/GVU properties, and previous studies have demonstrated the role of transient receptor potential vanilloid (TRPV) channels in modulating Ca2+ and BBB/GVU properties. The physiological role of thermosensitive TRPV channels in the BBB/GVU, as well as their possible therapeutic potential as targets in treating brain diseases via preserving the BBB are reviewed. TRPV2 and TRPV4 are the most abundant isoforms in the human BBB, and TRPV2 was evidenced to play a main role in regulating human BBB integrity. Interspecies differences in TRPV2 and TRPV4 BBB expression complicate further preclinical validation. More studies are still needed to better establish the physiopathological TRPV roles such as in astrocytes, vascular smooth muscle cells, and pericytes. The effect of the chronic TRPV modulation should also deserve further studies to evaluate their benefit and innocuity in vivo.


Physiology ◽  
2021 ◽  
Vol 36 (5) ◽  
pp. 292-306
Author(s):  
Heather A. Drummond

Loss of pressure-induced vasoconstriction increases susceptibility to renal and cerebral vascular injury. Favored paradigms underlying initiation of the response include transient receptor potential channels coupled to G protein-coupled receptors or integrins as transducers. Degenerin channels may also mediate the response. This review addresses the 1) evolutionary role of these molecules in mechanosensing, 2) limitations to identifying mechanosensitive molecules, and 3) paradigm shifting molecular model for a VSMC mechanosensor.


Sign in / Sign up

Export Citation Format

Share Document