scholarly journals DETERMINATION OF CAPITAL COSTS FOR SHELL AND TUBE HEAT EXCHANGER

Author(s):  
Sergey Scherbin ◽  
Anatoliy Glotov

. The capital costs of a shell and tube heat exchanger are considered, taking into account its design parameters and properties of heat carriers

Author(s):  
Sergey Scherbin ◽  
Anatoliy Glotov

The operating costs of a shell and tube heat exchanger are considered, taking into account its design parameters and properties of heat carriers.


Author(s):  
Majid Amidpour ◽  
Abazar Vahdat Azad

In this paper, the new approach of Constructal theory has been employed to design shell and tube heat exchangers. Constructal theory is a new method for optimal design in engineering applications. The purpose of this paper is optimization of shell and tube heat exchangers by reduction of total cost of the exchanger using the constructal theory. The total cost of the heat exchanger is the sum of operational costs and capital costs. The overall heat transfer coefficient of the shell and tube heat exchanger is increased by the use of constructal theory. Therefore, the capital cost required for making the heat transfer surface is reduced. Moreover, the operational energy costs involving pumping in order to overcome frictional pressure loss are minimized in this method. Genetic algorithm is used to optimize the objective function which is a mathematical model for the cost of the shell and tube heat exchanger and is based on constructal theory. The results of this research represent more than 50% reduction in costs of the heat exchanger.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Natalia Petrova ◽  
Abdel-Hakim Bouzid

Despite the fact that multipass shell-and-tube heat exchangers operating at high temperature are subject to frequent problems related to flange sealing, there is neither detailed explanations for the reasons of the failures nor an adequate solution to this problem. Specific geometry of multipass heat exchangers and the temperature difference between the inlet and the outlet fluids is responsible for the existence of a thermal circumferential gradient at the shell-to-channel bolted joint. However, existing flange design methods do not address nonaxisymmetrical temperature loading of the flanged joint assembly. The circumferential thermal gradient, as the cause of frequent failures to seal the flanged joints, is ignored. This paper outlines the analytical modeling of a flanged joint with a tube sheet of a multipass heat exchanger subjected to a nonaxisymmetrical thermal loading. A shell-and-tube heat exchanger of 51 in. diameter with cocurrent flow was used for analysis. The main steps of the theoretical analysis used for the determination of the circumferential temperature profiles and the thermal expansion displacements and distortions of the bolted joint components are given. The results from the proposed analytical model are compared with those obtained from finite element models.


2003 ◽  
Vol 125 (3) ◽  
pp. 527-530 ◽  
Author(s):  
Ahmad Fakheri

This paper presents a single closed form algebraic equation for the determination of the Log Mean Temperature Difference correction factor F for shell and tube heat exchangers having N shell passes and 2M tube passes per shell. The equation and its graphical presentation generalize the traditional equations and charts used for the determination of F. The equation presented is also useful in design, analysis and optimization of multi shell and tube heat exchanger, particularly for direct determination of the number of shells.


Author(s):  
Kizhakke Kodakkattu Saijal ◽  
Thondiyil Danish

A shell and tube heat exchanger with staggered baffles (STHX-ST) is designed by integrating the features of both segmental and helical baffles, which produces a helical flow in the shell side. This work studies the effect of different parameters on the performance of the STHX-ST through numerical analysis. Shell inner diameter, tube outer diameter, baffle cut, baffle spacing, and baffle orientation angle are the design parameters. Multi-objective optimization using genetic algorithm (GA) is carried out to maximize the heat transfer rate while minimizing the pressure drop. The objective functions for optimization are approximated using artificial neural networks (ANNs). The training data for ANNs are simulated from CFD analysis as per the Taguchi orthogonal test table. The optimal solution obtained from the Pareto front has a maximum heat transfer of 154555 W for a minimum pressure drop of 88083.86 Pa.


Author(s):  
J Bala Bhaskara Rao ◽  
V Ramachandra Raju ◽  
BBVL Deepak

Almost all thermal/chemical industries are equipped with heat exchangers in order to enhance the thermal efficiency. The performance of a shell and tube heat exchanger depends significantly on the design parameters like the tube cross-sectional area, tube orientation, baffle cut, etc. However, there are no specific relationships among these parameters to obtain an optimal design, such that the heat transfer rate is maximized and the pressure drop is minimized. Therefore, experimental and numerical simulations are carried out for a heat exchanger at various process parameters. Heat exchanger considered in this investigation is a single shell-multiple pass type device. For the performed experimental datasets, a generalized regression neural network is applied to generate a relation among the input and output process parameters.


Author(s):  
Natalia Petrova ◽  
Abdel-Hakim Bouzid

Despite the fact that multipass shell-and-tube heat exchangers operating at high temperature are subject to frequent problems related to flange sealing, there is neither detailed explanations for the reasons of the failures nor adequate solution to this problem. Specific geometry of multipass heat exchangers and the temperature difference between the inlet and the outlet fluids are responsible for the existence of a thermal circumferential gradient at the shell-to-channel bolted joint. However, existing flange design methods do not address non-axisymmetrical temperature loading of the flanged joint assembly. The circumferential thermal gradient, as the cause of frequent failures to seal the flanged joints, is ignored. This paper outlines the analytical modeling of a flanged joint with a tube sheet of a multipass heat exchanger subjected to a non-axisymmetrical thermal loading. A shell-and-tube heat exchanger of 51 in diameter with co-current flow was used for analysis. The main steps of the theoretical analysis used for the determination of the circumferential temperature profiles and the thermal expansion displacements and distortions of the bolted joint components are given. The results from the proposed analytical model are compared to those obtained from finite element models.


Sign in / Sign up

Export Citation Format

Share Document