Exergy efficiency analysis of a shell and tube heat exchanger condenser based on its different design parameters

2019 ◽  
Vol 48 (7) ◽  
pp. 3295-3311
Author(s):  
Navid Fakhrolmobasheri ◽  
Mohsen Rostami
Author(s):  
Sergey Scherbin ◽  
Anatoliy Glotov

. The capital costs of a shell and tube heat exchanger are considered, taking into account its design parameters and properties of heat carriers


Author(s):  
Sergey Scherbin ◽  
Anatoliy Glotov

The operating costs of a shell and tube heat exchanger are considered, taking into account its design parameters and properties of heat carriers.


Author(s):  
Kizhakke Kodakkattu Saijal ◽  
Thondiyil Danish

A shell and tube heat exchanger with staggered baffles (STHX-ST) is designed by integrating the features of both segmental and helical baffles, which produces a helical flow in the shell side. This work studies the effect of different parameters on the performance of the STHX-ST through numerical analysis. Shell inner diameter, tube outer diameter, baffle cut, baffle spacing, and baffle orientation angle are the design parameters. Multi-objective optimization using genetic algorithm (GA) is carried out to maximize the heat transfer rate while minimizing the pressure drop. The objective functions for optimization are approximated using artificial neural networks (ANNs). The training data for ANNs are simulated from CFD analysis as per the Taguchi orthogonal test table. The optimal solution obtained from the Pareto front has a maximum heat transfer of 154555 W for a minimum pressure drop of 88083.86 Pa.


Author(s):  
J Bala Bhaskara Rao ◽  
V Ramachandra Raju ◽  
BBVL Deepak

Almost all thermal/chemical industries are equipped with heat exchangers in order to enhance the thermal efficiency. The performance of a shell and tube heat exchanger depends significantly on the design parameters like the tube cross-sectional area, tube orientation, baffle cut, etc. However, there are no specific relationships among these parameters to obtain an optimal design, such that the heat transfer rate is maximized and the pressure drop is minimized. Therefore, experimental and numerical simulations are carried out for a heat exchanger at various process parameters. Heat exchanger considered in this investigation is a single shell-multiple pass type device. For the performed experimental datasets, a generalized regression neural network is applied to generate a relation among the input and output process parameters.


2021 ◽  
pp. 252-252
Author(s):  
Navid Bozorgan ◽  
Ashkan Ghafouri ◽  
Ehsanolah Assareh ◽  
Seyed Mohammad Safieddin Ardebili

The present study modifies the structural design of a shell-and-tube heat exchanger (STHE) by considering two key parameters such as the maximization of the overall heat transfer coefficient and minimization of the total pressure drop. Five geometric design variables which include the tube inside diameter, tube outside diameter, pitch size, baffle spacing, and the tube length are investigated for optimization. The governing equations for design and optimization of the STHE are evaluated; and the optimum design parameters are obtained by Bees Algorithm (BA). The selection of the important design parameters to achieve the proper design is evaluated by fixing each of these parameters, while the other the design parameters are selected as variable to optimize the effectiveness. Compared with the original STHE, the overall heat transfer coefficient is increased by 22.78 % with the minimum increase in the total pressure drop by 1.8%.


Author(s):  
Leonardo Cavalheiro Martinez ◽  
Leonardo Cavalheiro Martinez ◽  
Viviana Mariani ◽  
Marcos Batistella Lopes

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


Sign in / Sign up

Export Citation Format

Share Document