scholarly journals HAND CALCULATION AND EXTENDED THREE DIMENSIONAL ANALYSIS OF BUILDINGS (ETABS) SOFTWARE: AN ANALYSIS AND DESIGN FOR A THREE (3) STORY BUILDINGS

Author(s):  
John Louie A. Gagalang ◽  
Rina J. Arcigal

Earthquakes are known to produce one of the most destructive forces on earth. It has been seen that during past earthquakes many of the building were collapsed. Therefore, realistic method for analysis and design are required. Performance Based Design is the modern approach for earthquake resistant design. It is an attempt to predict the performance of buildings under expected seismic event. It involves the calculation of load and total Seismic weight of building from that the base shear is calculated in different zone. The study is carried out with the help of both manual calculations and ETABS software for a three story building in the campus. Analysis of structure is used to verify the fitness of the structure for use. To perform accurate analysis information such as structural loads, geometry, support condition and material properties should be determined. ETABS is the acronym of extended 3D analysis of building system is software developed by Computers and Structures, Inc. (CSI). ETABS is an engineering software product that can be used to analyze and design multi-story buildings using grid-like geometry, various methods of analysis and solution techniques, considering various load combinations. ETABS can also handle the largest and most complex building models, including a wide range of nonlinear behaviors, making it the tool of choice for structural engineers in the building industry. ETABS can be effectively used in the analysis and design of building structures which might consists of structural members like beams, columns, slabs, shear walls and the like. To perform accurate analysis information such as structural loads, geometry, support condition and material properties should be determined. The results of such an analysis typically include support reactions, stresses and displacements. Advanced structural analysis may examine dynamic response, stability and nonlinear behavior. KEYWORDS: Extended three analysis dimensional system, analysis and comparison, beams, building geometry, material properties

2020 ◽  
Vol 10 (3) ◽  
pp. 21
Author(s):  
Mohamed R. Elmezayen ◽  
Wei Hu ◽  
Amr M. Maghraby ◽  
Islam T. Abougindia ◽  
Suat U. Ay

Schmitt trigger (ST) circuits are widely used integrated circuit (IC) blocks with hysteretic input/output (I/O) characteristics. Like the I/O characteristics of a living neuron, STs reject noise and provide stability to systems that they are deployed in. Indeed, single-input/single-output (SISO) STs are likely candidates to be the core unit element in artificial neural networks (ANNs) due not only to their similar I/O characteristics but also to their low power consumption and small silicon footprints. This paper presents an accurate and detailed analysis and design of six widely used complementary metal-oxide-semiconductor (CMOS) SISO ST circuits. The hysteresis characteristics of these ST circuits were derived for hand calculations and compared to original design equations and simulation results. Simulations were carried out in a well-established, 0.35 μm/3.3 V, analog/mixed-signal CMOS process. Additionally, simulations were performed using a wide range of supplies and process variations, but only 3.3 V supply results are presented. Most of the new design equations provide better accuracy and insights, as broad assumptions of original derivations were avoided.


Author(s):  
Yun-Peng Zhu ◽  
Z. Q. Lang ◽  
Yu-Zhu Guo

AbstractIn engineering practice, a nonlinear system stable about several equilibria is often studied by linearizing the system over a small range of operation around each of these equilibria, and allowing the study of the system using linear system methods. Theoretically, for operations beyond a small range but still within the stable regime of an equilibrium, the system behaves nonlinearly, and can be described and investigated using the Volterra series approach. However, there is still no available approach that can systematically transform the model of a nonlinear system into a form that can be studied over the whole stable regime about an equilibrium so as to facilitate the system study using the Volterra series approach. This transformation is, in the present study, referred to as nonlinear model standardization, which is the extension of the well-known concept of linearization to the nonlinear case. In this paper, a novel approach to nonlinear model standardization is proposed for nonlinear systems that can be described by a Nonlinear AutoRegressive model with eXogeneous input (NARX) or a nonlinear differential equation (NDE) model. The proposed approach is then used in three case studies covering the applications in nonlinear system analysis, nonlinear system design, and nonlinearity compensation, respectively, demonstrating the significance of the proposed nonlinear model standardization in a wide range of engineering practices.


2012 ◽  
Vol 60 (2) ◽  
pp. 205-213
Author(s):  
K. Dems ◽  
Z. Mróz

Abstract. An elastic structure subjected to thermal and mechanical loading with prescribed external boundary and varying internal interface is considered. The different thermal and mechanical nature of this interface is discussed, since the interface form and its properties affect strongly the structural response. The first-order sensitivities of an arbitrary thermal and mechanical behavioral functional with respect to shape and material properties of the interface are derived using the direct or adjoint approaches. Next the relevant optimality conditions are formulated. Some examples illustrate the applicability of proposed approach to control the structural response due to applied thermal and mechanical loads.


2014 ◽  
Vol 50 (3) ◽  
pp. 1841-1863 ◽  
Author(s):  
Tarek Menni ◽  
Jerome Galy ◽  
Eric Chaumette ◽  
Pascal Larzabal

2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Liliana Anchidin-Norocel ◽  
Sonia Amariei ◽  
Gheorghe Gutt

The aim of this paper is the development of a sensor for the quantification of nickel ions in food raw materials and foods. It is believed that about 15% of the human population suffers from nickel allergy. In addition to digestive manifestations, food intolerance to nickel may also have systemic manifestations, such as diffuse dermatitis, diffuse itching, fever, rhinitis, headache, altered general condition. Therefore, it is necessary to control this content of nickel ions for the health of the human population by developing a new method that offers the advantages of a fast, not expensive, in situ, and accurate analysis. For this purpose, bismuth oxide-screen-printed electrodes (SPEs) and graphene-modified SPEs were used with a very small amount of dimethylglyoxime and amino acid L-histidine that were deposited. A potentiostat that displays the response in the form of a cyclic voltammogram was used to study the electrochemical properties of nickel standard solution with different concentrations. The results were compared and the most sensitive sensor proved to be bismuth oxide-SPEs with dimethylglyoxime (Bi2O3/C-dmgH2) with a linear response over a wide range (0.1–10 ppm) of nickel concentrations. Furthermore, the sensor shows excellent selectivity in the presence of common interfering species. The Bi2O3/C-dmgH2 sensor showed good viability for nickel analysis in food samples (cocoa, spinach, cabbage, and red wine) and demonstrated significant advancement in sensor technology for practical applications.


Author(s):  
Manfred Ehresmann ◽  
Georg Herdrich ◽  
Stefanos Fasoulas

AbstractIn this paper, a generic full-system estimation software tool is introduced and applied to a data set of actual flight missions to derive a heuristic for system composition for mass and power ratios of considered sub-systems. The capability of evolutionary algorithms to analyse and effectively design spacecraft (sub-)systems is shown. After deriving top-level estimates for each spacecraft sub-system based on heuristic heritage data, a detailed component-based system analysis follows. Various degrees of freedom exist for a hardware-based sub-system design; these are to be resolved via an evolutionary algorithm to determine an optimal system configuration. A propulsion system implementation for a small satellite test case will serve as a reference example of the implemented algorithm application. The propulsion system includes thruster, power processing unit, tank, propellant and general power supply system masses and power consumptions. Relevant performance parameters such as desired thrust, effective exhaust velocity, utilised propellant, and the propulsion type are considered as degrees of freedom. An evolutionary algorithm is applied to the propulsion system scaling model to demonstrate that such evolutionary algorithms are capable of bypassing complex multidimensional design optimisation problems. An evolutionary algorithm is an algorithm that uses a heuristic to change input parameters and a defined selection criterion (e.g., mass fraction of the system) on an optimisation function to refine solutions successively. With sufficient generations and, thereby, iterations of design points, local optima are determined. Using mitigation methods and a sufficient number of seed points, a global optimal system configurations can be found.


2010 ◽  
Vol 455 ◽  
pp. 237-241
Author(s):  
X.Y. Yang ◽  
H.B. Zheng ◽  
Z.W. Zhang

With the development of manufacturing automation and intelligent increasing speed, the construction in plant management information has been important tasks to promote business innovation ability, improve competitiveness and manufacturing execution. In this paper, UML (Unified Modeling Language) and object-oriented modeling technology were applied to model the static structure and dynamic behavior of the plant management information from requirement analysis to system implementation, including functional requirement model, static structural model, asset management time sequence chart, system physical model and so on. The visualized system analysis method and technology better planned the system design and improved the efficiency of the system development. It will play a guiding role in the object-oriented software development.


Sign in / Sign up

Export Citation Format

Share Document