scholarly journals CRITERIA FOR MULTI-CRITERIA SELECTION OF A TELECOMMUNICATIONS NETWORK CONFIGURATION FOR A CONTINUOUS MONITORING SYSTEM WITH MOBILE SURVEILLANCE DEVICES

T-Comm ◽  
2021 ◽  
Vol 15 (8) ◽  
pp. 30-35
Author(s):  
Aleksandr V. Timoshenko ◽  
◽  
Pavel G. Milovanov ◽  
Azret A. Kochkarov ◽  
Elena F. Lyadova ◽  
...  

The article proposes criteria for multi-criteria selection of the configuration of the telecommunications network of a structural-dynamic continuous monitoring system. The mobility of the components of the monitoring system leads to periodic (or permanent) changes in the topology of the telecommunications network, through which data is transmitted in the monitoring system. Destabilizing effects of both natural and artificial origin also lead to forced changes in the topology of the telecommunications network. To select the configuration of the telecommunications network (a set of information sources, information consumers, data transmission network, and optimally formed information channels) both during the initial construction of the system and during the operation of the system of continuous monitoring for the detection of objects (on a given territory at a given time with a given probability), it is proposed to apply three criteria. The first criterion is the time of configuration formation, the second is the radius of resistance to destabilizing influences, and the third is an indicator of the continuity of information interaction between the elements of the system.

Author(s):  
M. A. Abbas ◽  
H. Setan ◽  
Z. Majid ◽  
A. K. Chong ◽  
L. Chong Luh ◽  
...  

Similar to other electronic instruments, terrestrial laser scanner (TLS) can also inherent with various systematic errors coming from different sources. Self-calibration technique is a method available to investigate these errors for TLS which were adopted from photogrammetry technique. According to the photogrammetry principle, the selection of datum constraints can cause different types of parameter correlations. However, the network configuration applied by TLS and photogrammetry calibrations are quite different, thus, this study has investigated the significant of photogrammetry datum constraints principle in TLS self-calibration. To ensure that the assessment is thorough, the datum constraints analyses were carried out using three variant network configurations: 1) minimum number of scan stations; 2) minimum number of surfaces for targets distribution; and 3) minimum number of point targets. Based on graphical and statistical, the analyses of datum constraints selection indicated that the parameter correlations obtained are significantly similar. In addition, the analysis has demonstrated that network configuration is a very crucial factor to reduce the correlation between the calculated parameters.


2001 ◽  
Author(s):  
John Donelson ◽  
Wayne M. Zavis ◽  
S. K. (John) Punwani ◽  
Monique Ferguson Stewart ◽  
Mark C. Edwards

Abstract Science Applications International Corporation (SAIC) and Wilcoxon Research have developed a real-time on-board condition monitoring system for freight trains. The Office of Research and Development of the Federal Railroad Administration funded the development of the system. The system monitors bearings, wheels, trucks and brakes on freight trains in order to detect equipment defects and derailments. The objectives of the system are to improve railroad safety and operation efficiency through continuous monitoring of mechanical components on freight trains.


2009 ◽  
Vol 46 (6) ◽  
pp. 45-48
Author(s):  
李树珉 Li Shumin ◽  
刘斌 Liu Bin ◽  
孙长库 Sun Changku ◽  
赵玉梅 Zhao Yumei

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3758
Author(s):  
Hsing-Cheng Yu ◽  
Ming-Yang Tsai ◽  
Yuan-Chih Tsai ◽  
Jhih-Jyun You ◽  
Chun-Lin Cheng ◽  
...  

Recently, environmental pollution resulting from industrial waste has been emerging in an endless stream. The industrial waste contains chemical materials, heavy metal ions, and other toxic materials. Once the industrial waste is discharged without standards, it might lead to water or environmental pollution. Hence, it has become more important to provide evidence-based water quality monitoring. The use of a multifunctional miniaturized water quality monitoring system (WQMS), that contains continuous monitoring, water quality monitoring, and wireless communication applications, simultaneously, is infrequent. Thus, electrodes integrated with polydimethylsiloxane flow channels were presented in this study to be a compound sensor, and the sensor can be adopted concurrently to measure temperature, pH, electrical conductivity, and copper ion concentration, whose sensitivities are determined as 0.0193 °C/mV, −0.0642 pH/mV, 1.1008 mS/V·cm (from 0 mS/cm to 2 mS/cm) and 1.1975 mS/V·cm (from 2 mS/cm to 5.07 mS/cm), and 0.0111 ppm/mV, respectively. A LoRa shield connected into the system could provide support as a node of long range wide area network (LoRaWAN) for wireless communication application. As mentioned above, the sensors, LoRa, and circuit have been integrated in this study to a continuous monitoring system, WQMS. The advantages of the multifunctional miniaturized WQMS are low cost, small size, easy maintenance, continuous sampling and long-term monitoring for many days. Every tested period is 180 min, and the measured rate is 5 times per 20 min. The feedback signals of the miniaturized WQMS and measured values of the instrument were obtained to compare the difference. In the measured results at three different place-to-place locations the errors of electrical conductivity are 0.051 mS/cm, 0.106 mS/cm, and 0.092 mS/cm, respectively. The errors of pH are 0.68, 0.87, and 0.56, respectively. The errors of temperature are 0.311 °C, 0.252 °C, and 0.304 °C, respectively. The errors of copper ion concentration are 0.051 ppm, 0.058 ppm, 0.050 ppm, respectively.


2020 ◽  
Vol 2 (10) ◽  
Author(s):  
Khushboo Qayyum ◽  
Idrees Zaman ◽  
Anna Förster

Abstract In oceans, fish usually live in an environment that is best suited for their growth. When these fish are introduced into man-made environment, e.g. in mariculture and aquaculture set-ups, the physical parameters might stray from their ideal values, resulting in improper growth and undesired outcomes. Hence, to prevent these undesirable outcomes, continuous monitoring of the physical parameters of the water such as pH, temperature and dissolved oxygen is required. In this work, we present a system called H2O sense, which continuously monitors the physical parameters of the water in tanks and alerts the user in case the values deviate from ideal. We use only low-power, low-cost hardware and open-source development tools, which makes the system easily applicable to various settings. The deployment of our system in the Maritime Laboratory of the University of Namibia shows its efficacy. Furthermore, we evaluate in detail the performance of our system and discuss its applicability in similar challenged environments.


2015 ◽  
Vol 772 ◽  
pp. 597-602
Author(s):  
Gheorghe Daniel Voinea ◽  
Silviu Butnariu

This paper presents the design of an innovative system for the diagnosis and treatment of spine disorders, in particular, the scoliosis. The product consists in a mechatronic device that is able to measure in real time the instantaneous position of the human spine, facilitating a precise diagnosis as well as continuous monitoring for prevention and/or treatment of spine disorders.


Author(s):  
Sai Hung Cheung ◽  
James L. Beck

In recent years, Bayesian model updating techniques based on measured data have been applied in structural health monitoring. Often we are faced with the problem of how to select the ‘best’ model from a set of competing candidate model classes for the system based on data. To tackle this problem, Bayesian model class selection is used, which provides a rigorous Bayesian updating procedure to give the probability of different candidate classes for a system, based on the data from the system. There may be cases where more than one model class has significant probability and each of these will give different predictions. Bayesian model class averaging provides a coherent mechanism to incorporate all the considered model classes in the probabilistic predictions for the system. However, both Bayesian model class selection and Bayesian model class averaging require the calculation of the evidence of the model class which requires the nontrivial computation of a multi-dimensional integral. In this paper, several methods for solving this computationally challenging problem of model class selection are presented, proposed and compared. The efficiency of the proposed methods is illustrated by an example involving a structural dynamic system.


Sign in / Sign up

Export Citation Format

Share Document