scholarly journals PREDICTIVE MODELING OF TECHNOLOGICAL DEVELOPMENT TRENDS

Author(s):  
Alla G. Kravets ◽  
◽  
Natalia A. Salnikova ◽  

In the work, the problem of forecasting technological development trends was considered. A review of the sources of the global patent space, an analysis of technological development trends, a survey of data sources for training the neural network were carried out. Existing data mining techniques were analyzed for more accurate and faster forecasting. A module for predictive modeling of trends in technological development was developed, algorithms for the module for predictive modeling of trends in technological development were described.

2015 ◽  
Vol 738-739 ◽  
pp. 191-196
Author(s):  
Yun Jie Li ◽  
Hui Song

In this paper, several data mining techniques were discussed and analyzed in order to achieve the objective of human daily activities recognition based on a continuous sensing data set. The data mining techniques of decision tree, Naïve Bayes and Neural Network were successfully applied to the data set. The paper also proposed an idea of combining the Neural Network with the Decision Tree, the result shows that it works much better than the typical Neural Network and the typical Decision Tree model.


Author(s):  
Kristina Zhatkina ◽  
Oksana Kreider

This article describes the possibility of using data mining techniques. In order to join new carpet participants, it is necessary to understand that the system of interaction with them is public educational services. To implement digital educational platforms, it is proposed to create an agent that collects information about sites, and also selects and tests the architecture of the neural network to build an individual trajectory that is trained using the competency-based model.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiujin Yu ◽  
Shengfu Liu ◽  
Hui Zhang

As one of the oldest languages in the world, Chinese has a long cultural history and unique language charm. The multilayer self-organizing neural network and data mining techniques have been widely used and can achieve high-precision prediction in different fields. However, they are hardly applied to Chinese language feature analysis. In order to accurately analyze the characteristics of Chinese language, this paper uses the multilayer self-organizing neural network and the corresponding data mining technology for feature recognition and then compared it with other different types of neural network algorithms. The results show that the multilayer self-organizing neural network can make the accuracy, recall, and F1 score of feature recognition reach 68.69%, 80.21%, and 70.19%, respectively, when there are many samples. Under the influence of strong noise, it keeps high efficiency of feature analysis. This shows that the multilayer self-organizing neural network has superior performance and can provide strong support for Chinese language feature analysis.


Author(s):  
Feyza Gürbüz ◽  
Fatma Gökçe Önen

The previous decades have witnessed major change within the Information Systems (IS) environment with a corresponding emphasis on the importance of specifying timely and accurate information strategies. Currently, there is an increasing interest in data mining and information systems optimization. Therefore, it makes data mining for optimization of information systems a new and growing research community. This chapter surveys the application of data mining to optimization of information systems. These systems have different data sources and accordingly different objectives for knowledge discovery. After the preprocessing stage, data mining techniques can be applied on the suitable data for the objective of the information systems. These techniques are prediction, classification, association rule mining, statistics and visualization, clustering and outlier detection.


Author(s):  
Sherry Y. Chen ◽  
Xiaohui Liu

There is an explosion in the amount of data that organizations generate, collect, and store. Organizations are gradually relying more on new technologies to access, analyze, summarize, and interpret information intelligently. Data mining, therefore, has become a research area with increased importance (Amaratunga & Cabrera, 2004). Data mining is the search for valuable information in large volumes of data (Hand, Mannila, & Smyth, 2001). It can discover hidden relationships, patterns, and interdependencies and generate rules to predict the correlations, which can help the organizations make critical decisions faster or with a greater degree of confidence (Gargano & Ragged, 1999). There is a wide range of data mining techniques, which has been successfully used in many applications. This article is an attempt to provide an overview of existing data mining applications. The article begins by explaining the key tasks that data mining can achieve. It then moves to discuss applications domains that data mining can support. The article identifies three common application domains, including bioinformatics, electronic commerce, and search engines. For each domain, how data mining can enhance the functions will be described. Subsequently, the limitations of current research will be addressed, followed by a discussion of directions for future research.


Author(s):  
Marenglen Biba ◽  
Narasimha Rao Vajjhala ◽  
Lediona Nishani

This book chapter provides a state-of-the-art survey of visual data mining techniques used for collaborative filtering. The chapter begins with a discussion on various visual data mining techniques along with an analysis of the state-of-the-art visual data mining techniques used by researchers as well as in the industry. Collaborative filtering approaches are presented along with an analysis of the state-of-the-art collaborative filtering approaches currently in use in the industry. Visual data mining can provide benefit to existing data mining techniques by providing the users with visual exploration and interpretation of data. The users can use these visual interpretations for further data mining. This chapter dealt with state-of-the-art visual data mining technologies that are currently in use apart. The chapter also includes the key section of the discussion on the latest trends in visual data mining for collaborative filtering.


2017 ◽  
pp. 1274-1292
Author(s):  
Marenglen Biba ◽  
Narasimha Rao Vajjhala ◽  
Lediona Nishani

This book chapter provides a state-of-the-art survey of visual data mining techniques used for collaborative filtering. The chapter begins with a discussion on various visual data mining techniques along with an analysis of the state-of-the-art visual data mining techniques used by researchers as well as in the industry. Collaborative filtering approaches are presented along with an analysis of the state-of-the-art collaborative filtering approaches currently in use in the industry. Visual data mining can provide benefit to existing data mining techniques by providing the users with visual exploration and interpretation of data. The users can use these visual interpretations for further data mining. This chapter dealt with state-of-the-art visual data mining technologies that are currently in use apart. The chapter also includes the key section of the discussion on the latest trends in visual data mining for collaborative filtering.


Author(s):  
Lenka Lhotská ◽  
Vladimír Krajca ◽  
Jitka Mohylová ◽  
Svojmil Petránek ◽  
Václav Gerla

This chapter deals with the application of principal components analysis (PCA) to the field of data mining in electroencephalogram (EEG) processing. The principal components are estimated from the signal by eigen decomposition of the covariance estimate of the input. Alternatively, they can be estimated by a neural network (NN) configured for extracting the first principal components. Instead of performing computationally complex operations for eigenvector estimation, the neural network can be trained to produce ordered first principal components. Possible applications include separation of different signal components for feature extraction in the field of EEG signal processing, adaptive segmentation, epileptic spike detection, and long-term EEG monitoring evaluation of patients in a coma.


Sign in / Sign up

Export Citation Format

Share Document