scholarly journals Simultaneous Heat and Mass Transfer in Inclined Channel with Asymmetrical Conditions

2012 ◽  
Vol 12 (03) ◽  
Author(s):  
Othmane Oulaid ◽  
Brahim Benhamou ◽  
Nicolas Galanis

This work deals with a numerical study of simultaneous heat and mass transfer with phase change in an inclined channel formed by two parallel plates. The lower one is covered by a thin liquid water film and the upper one is considered impermeable. The plates are maintained at a constant temperature TW. Ambient air with uniform dry bulb temperature Tin and relative humidity φin enters the channel with a uniform upward velocity Uin. The liquid film is assumed to be extremely thin and its temperature is equal to the wall temperature. Steady state conditions are considered and the flow is assumed to be laminar. Viscous dissipation, radiation heat transfer and other secondary effects (pressure work, energy transport by the inter-diffusion of species, Dufour and Soret effects) are neglected. The physical properties are taken constant except for the density in the body forces, which is considered to be a linear function of temperature and mass fraction. Results show that buoyancy forces have an important effect on the hydrodynamic, thermal and mass fraction fields and this effect depends on the channel inclination. A flow reversal chart and analytical correlations for the corresponding critical values of the thermal and solutal Grashof numbers are presented for different channel inclinations.


1982 ◽  
Vol 47 (3) ◽  
pp. 766-775 ◽  
Author(s):  
Václav Kolář ◽  
Jan Červenka

The paper presents results obtained by processing a series of published experimental data on heat and mass transfer during evaporation of pure liquids from the free board of a liquid film into the turbulent gas phone. The data has been processed on the basis of the earlier theory of mechanism of heat and mass transfer. In spite of the fact that this process exhibits a strong Stefan's flow, the results indicate that with a proper definition of the driving forces the agreement between theory and experiment is very good.


1957 ◽  
Vol 49 (6) ◽  
pp. 961-968 ◽  
Author(s):  
W. G. Mathers ◽  
A. J. Madden ◽  
Edgar L. Piret

Sign in / Sign up

Export Citation Format

Share Document