scholarly journals A Review on Reinforced Concrete Beam Column Joint: Role, Modeling and Recent Details

2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Basem Abdelwahed ◽  

Reinforced concrete frames are commonly used systems in buildings. The philosophy behind the proper design for this type of frames is to provide them with sufficient ductility. The structural ductility of a frame is mainly determined by the ductility of its components, i.e., the beams, columns, and joints forming this frame. Beam-column joint role in a building is to connect its components together and enable these components to reach their ultimate resistance. Its stiffness, strength, and ductility are key characteristics needed to guarantee efficient building behaviour under the action of different loads. Previous research attributed some building’s damage to inadequate reinforcement details of its joints. Deficiency in joints performance is related to inadequate codes guidelines or to bad construction practice. This paper reviewed the provisions of three different codes (ACI 318-08, Eurocode 8, and ECP-203) concerning the proper design and detailing of different joints. This review study aims to introduce a wider overview on the assessment of joints performance in buildings under different loading scenarios. This data base will enable practicing engineers to identify the joint key parameters with providing different analytical procedures. This study investigates joints in different configurations. These include planner joints, joints with transverse beams, and the common joint situation with the presence of both transverse beams and slab. This survey includes experimental and analytical representation of the previous mentioned joints. Different retrofitting schemes are presented as well for every considered joint. This review allows to identify the evolution of joints capacity in function of reinforcement detailing, level of axial stresses, and loading history. The analysis shows that a decrease in joint resistance can be recovered by using i) haunches brackets, ii) FRP, or iii) post tension metal strip.

Author(s):  
Alexander G. Tsonos ◽  
Konstantinos V. Papanikolaou

In this study the effectiveness of all the repair and strengthening techniques proposed by the United Nations Industrial Development Organization (UNIDO) Manual and by Eurocode 8: part 1-4 for reinforced concrete beam-column joints damaged by strong earthquakes is investigated experimentally and analytically. Five one-half-scale exterior beam-column joint specimens were submitted to reverse cyclic pseudo-static displacements. Three of these specimens were then repaired by the epoxy pressure injection technique or by the removal and replacement technique. The other two specimens were strengthened by partial three-sided jacketing. All the repaired and strengthened specimens were then subjected to the same displacement history as that imposed on the original specimens. It can be concluded that all the repair and strengthening techniques proved to be satisfactory.


Author(s):  
R. Park ◽  
Ruitong Dai

Four beam-interior column Units were designed, constructed and tested subjected to simulated earthquake and gravity loading. One Unit followed the requirements of the New Zealand concrete design code NZS 3101:1982 for structures designed for ductility. The other three Units only partly followed the requirements of NZS 3101, in order to obtain information on the behaviour of beam-column joints of limited ductility. Plastic hinging was designed to occur in the beams. The major test variables were the quantity of horizontal and vertical shear reinforcement in the beam-interior column joint cores and the diameter of the beam longitudinal reinforcing bars passing through the joint cores. The test results indicted that the current NZS 3101 detailing requirements for shear and bond in the beam-interior column joint core regions of ductile reinforced concrete frames could be relaxed.


2003 ◽  
Vol 6 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Sayed A. Attaalla ◽  
Mehran Agbabian

The characteristics of the shear deformation inside the beam-column joint core of reinforced concrete frame structures subjected to seismic loading are discussed in this paper. The paper presents the formulation of an analytical model based on experimental observations. The model is intended to predict the expansions of beam-column joint core in the horizontal and vertical directions. The model describes the strain compatibility inside the joint in an average sense. Its predictions are verified utilizing experimental measurements obtained from tests conducted on beam-column connections. The model is found to adequately predict the components of shear deformation in the joint core and satisfactorily estimates the average strains in the joint hoops up to bond failure. The model may be considered as a simple, yet, important step towards analytical understanding of the sophisticated shear mechanism inside the joint and may be implemented in a controlled-deformation design technique of the joint.


Structures ◽  
2019 ◽  
Vol 20 ◽  
pp. 353-364 ◽  
Author(s):  
Nassereddine Attari ◽  
Youcef Si Youcef ◽  
Sofiane Amziane

2018 ◽  
Vol 20 (1) ◽  
pp. 348-360 ◽  
Author(s):  
Patricia A. Sarmiento ◽  
Benjamín Torres ◽  
Daniel M. Ruiz ◽  
Yezid A. Alvarado ◽  
Isabel Gasch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document