Invasive plant management in Kenai Fjords National Park: 2019 summary report

2020 ◽  
Author(s):  
Sierra Sampson ◽  
Christina Kriedeman
Oryx ◽  
2007 ◽  
Vol 41 (2) ◽  
pp. 160-167 ◽  
Author(s):  
Llewellyn C. Foxcroft ◽  
Stefanie Freitag-Ronaldson

AbstractLong-term ecological and economic sustainability will ultimately determine the outcome of any conservation management programme. Invasive alien plants, first recorded in the Kruger National Park, South Africa, in 1937, are now recognized as one of the greatest threats to the biodiversity of this Park. Such plants have been managed in the Park since 1956, with control advancing mainly through a process of trial and error. Refinement of invasive plant management strategies has resulted in an understanding of the target plants' biology and ecology, herbicide use and herbicide-plant interactions, as well as the plant-insect interactions of biological control. Careful integration of different control methods has proved essential to ensure the most appropriate use of techniques to deliver the best possible results from the resources available and achieve long-term sustainability. We outline the development of control efforts and current control programmes and the process of their incorporation into the institutional memory of Kruger National Park over the last 7 decades.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Sarah Yuliana

<p>Threats on biodiversity in a conservation area can originated from outside or inside the area.  One of the outsiders that rarely noticeable is invasion of exotic species, which usually alters the stability of natural processes within the area. Wasur National Park has some wetland ecosystems that overcome the issues of deterioration in function and benefits due to exotic plant invasion in recent days. This research was carried out to determine priority species that need immediately managements in Wasur National Park.  Field survey and inventory followed by scoring and evaluation methods using Weed Risk Assessment by Exotic Species Ranking System were taken in this research to obtain the priority species. The scoring and ranking steps placed encountered invasive plant species into four categories of management priority based on Significance of Impact and the Feasibility of Control. The result identified 49 species of invasive plants from three wetlands in Wasur National Park, which 75% (or 36 species) of them are species of Priority 3 (lesser threat and easy to control), 4 species of Priority 4 (lesser threat – hard to control) and at least 9 species of Priority 2 (serious threat-hard to control).  Priority 2 species consist of <em>Carex</em> sp., <em>Eleocharis indica</em> (Lour.) Druce, <em>Hanguana malayana</em> (Jack.) Merr., <em>Imperata cylindrica</em> (L.) Beauv., <em>Ludwigia oktovalvis</em> (Jacq.) Raven, <em>Melaleuca cajuputi</em>  Powell, <em>M. leucadendron</em> (Linn.), <em>Paspalum</em> <em>conjugatum</em> P. J. Bergius, and <em>Stachytareta jamaicensis</em> (L.).  These invasive plants need to be managed properly and thoroughly further.</p>


2013 ◽  
Vol 31 (6) ◽  
pp. 951-968 ◽  
Author(s):  
Jennifer Atchison ◽  
Lesley Head

Weed Science ◽  
2007 ◽  
Vol 55 (6) ◽  
pp. 626-630 ◽  
Author(s):  
Kirk W. Davies ◽  
Roger L. Sheley

Controlling invasive plant infestations is very costly and often unsuccessful. Preventing invasions is more cost-effective than controlling invasive plants after they are established. Because prevention guidelines do not suggest any tools or methods to limit wind dispersal of invasive plant seeds, we investigated the influence of neighboring vegetation height on seed dispersal of a wind-dispersed (yellow salsify) and nonwind-dispersed (medusahead) species. To examine the influence of neighboring vegetation height on dispersal, seeds of both species were released in front of an artificial stand of desert wheatgrass in a modified wind tunnel. Treatments were a complete factorial design with two species, four vegetation heights (10, 30, 40, and 60 cm), three wind speeds (3, 5.5, and 10 km h−1), and three release distances from the neighboring vegetation (0, 15, and 30 cm). The ability of medusahead and yellow salsify seeds to disperse was influenced by the height of neighboring vegetation. Increasing height of neighboring vegetation decreased the number of yellow salsify seeds dispersing across neighboring vegetation. The greatest percentage of medusahead seeds dispersed across the neighboring vegetation was at the shortest height. Based on these results, we suggest that maintaining or promoting tall vegetation neighboring invasive plant infestations may reduce wind dispersal of seeds. More research is needed to investigate the influence of varying heights, densities, structural attributes, and composition of vegetation neighboring infestations and the dispersal of invasive plants.


Rangelands ◽  
2012 ◽  
Vol 34 (6) ◽  
pp. 6-10 ◽  
Author(s):  
Roger L. Sheley ◽  
Brenda S. Smith

2020 ◽  
Vol 13 (2) ◽  
pp. 108-113
Author(s):  
Scott R. Abella ◽  
Lindsay P. Chiquoine ◽  
Jeremy M. Moss ◽  
Eric D. Lassance ◽  
Charles D. Schelz

AbstractThere is a continual need for invasive plant science to develop approaches for cost-effectively benefiting native over nonnative species in dynamic management and biophysical contexts, including within predominantly nonnative plant landscapes containing only small patches of native plants. Our objective was to test the effectiveness of a minimal-input strategy for enlarging native species patches within a nonnative plant matrix. In Pecos National Historical Park, New Mexico, USA, we identified 40 native perennial grass patches within a matrix of the nonnative annual forb kochia [Bassia scoparia (L.) A.J. Scott]. We mechanically cut B. scoparia in a 2-m-wide ring surrounding the perimeters of half the native grass patches (with the other half as uncut controls) and measured change in native grass patch size (relative to pretreatment) for 3 yr. Native grass patches around which B. scoparia was cut grew quickly the first posttreatment year and by the third year had increased in size four times more than control patches. Treated native grass patches expanded by an average of 25 m2, from 4 m2 in October 2015 before treatment to 29 m2 in October 2018. The experiment occurred during a dry period, conditions that should favor B. scoparia and contraction of the native grasses, suggesting that the observed increase in native grasses occurred despite suboptimal climatic conditions. Strategically treating around native patches to enlarge them over time showed promise as a minimal-input technique for increasing the proportion of the landscape dominated by native plants.


AoB Plants ◽  
2019 ◽  
Author(s):  
Brenda J Grewell ◽  
Caryn J Futrell ◽  
Maria T Iannucci ◽  
Rebecca E Drenovsky

Abstract Non-native aquatic Ludwigia species from a polyploid complex are among the world’s most problematic invasive plants. These emergent, floating-leaved species respond to disturbance through fragmentation of shoots and/or rhizomes, spreading rapidly by hydrochorous dispersal and posing challenges for invasive plant management. While recruitment of clonal aquatic plant species from shoot fragmentation is well documented, regeneration from rhizome bud banks, although common, often is overlooked. It is further unclear how interactions among ploidy and resource availability influence regeneration success of rhizome fragments. We conducted a full factorial experiment in aquatic mesocosms to compare trait responses of Ludwigia congeners differing in ploidy (diploid, decaploid) grown from clonal rhizome fragments under contrasting soil nutrient availability (low, high). Similar to previous work with shoot fragments, the diploid congener had a higher relative growth rate and produced more biomass than the decaploid during this establishment stage of growth. High growth rates and biomass production were associated with greater rhizome N and P and reduced investment in belowground structures. Comparing these results to previous shoot fragment studies with Ludwigia, rhizome fragments appear to have much greater growth potential, suggesting that management strategies should minimize disturbance to prevent fragmentation and dispersal of belowground structures. Furthermore, rapid response to newly colonizing diploid invaders will be essential to minimizing spread, and reductions in nutrient loads to aquatic environments may be more effective toward controlling establishment of the diploid congener than the decaploid.


Sign in / Sign up

Export Citation Format

Share Document