Elements of probability theory with values in bihyperbolic algebra

Author(s):  
Tamila Kolomiiets

In this paper we expand the concept of a really significant probabilistic measure in the case when the measure takes values in the algebra of bihyperbolic numbers. The basic properties of bihyperbolic numbers are given, in particular idempotents, main ideals generated by idempotents, Pierce's decompo\-sition and the set of zero divisors of the algebra of bihyperbolic numbers are determined. We entered the relation of partial order on the set of bihyperbolic numbers, by means of which the bihyperbolic significant modulus is defined and its basic properties are proved. In addition, some bihyperbolic modules can be endowed with a bihyperbolic significant norms that take values in a set of non-negative bihyperbolic numbers. We define $\sigma$-additive functions of sets in a measurable space that take appropriately normalized bihyperbolic values, which we call a bihyperbolic significant probability. It is proved that such a bihyperbolic probability satisfies the basic properties of the classical probability. A representation of the bihyperbolic probability measure is given and its main properties are proved. A bihyperbolically significant random variable is defined on a bihyperbolic probability space, and this variable is a bihyperbolic measurable function in the same space. We proved the criterion of measurability of a function with values in the algebra of bihyperbolic numbers, and the basic properties of bihyperbolic random variables are formulated and proved. Special cases have been studied in which the bihyperbolic probability and the bihyperbolic random variable take values that are zero divisors of bihyperbolic algebra. Although bihyperbolic numbers are less popular than hyperbolic numbers, bicomplex numbers, or quaternions, they have a number of important properties that can be useful, particularly in the study of partial differential equations also in mathematical statistics for testing complex hypotheses, in thermodynamics and statistical physics.

Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 309-320 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad Cakic ◽  
F.A. Shiha

In this paper we give a new family of numbers, called ??-Whitney numbers, which gives generalization of many types of Whitney numbers and Stirling numbers. Some basic properties of these numbers such as recurrence relations, explicit formulas and generating functions are given. Finally many interesting special cases are derived.


2012 ◽  
Vol 44 (3) ◽  
pp. 842-873 ◽  
Author(s):  
Zhiyi Chi

Nonnegative infinitely divisible (i.d.) random variables form an important class of random variables. However, when this type of random variable is specified via Lévy densities that have infinite integrals on (0, ∞), except for some special cases, exact sampling is unknown. We present a method that can sample a rather wide range of such i.d. random variables. A basic result is that, for any nonnegative i.d. random variable X with its Lévy density explicitly specified, if its distribution conditional on X ≤ r can be sampled exactly, where r > 0 is any fixed number, then X can be sampled exactly using rejection sampling, without knowing the explicit expression of the density of X. We show that variations of the result can be used to sample various nonnegative i.d. random variables.


Author(s):  
Gauhar Rahman ◽  
KS Nisar ◽  
Shahid Mubeen

In this paper, we define a (p,v)-extension of Hurwitz-Lerch Zeta function by considering an extension of beta function defined by Parmar et al. [J. Classical Anal. 11 (2017) 81–106]. We obtain its basic properties which include integral representations, Mellin transformation, derivative formulas and certain generating relations. Also, we establish the special cases of the main results.


2018 ◽  
Vol 33 (1) ◽  
pp. 041
Author(s):  
Velimir M. Ilić ◽  
Miroslav D. Ćirić ◽  
Miomir S. Stanković

In this paper we consider the problem of efficient computation of cross-moments of a vector random variable represented by a stochastic context-free grammar. Two types of cross-moments are discussed. The sample space for the first one is the set of all derivations of the context-free grammar, and the sample space for the second one is the set of all derivations which generate a string belonging to the language of the grammar. In the past, this problem was widely studied, but mainly for the cross-moments of scalar variables and up to the second order. This paper presents new algorithms for computing the cross-moments of an arbitrary order, while the previously developed ones are derived as special cases.


2019 ◽  
Vol 116 (12) ◽  
pp. 5451-5460 ◽  
Author(s):  
Jean Barbier ◽  
Florent Krzakala ◽  
Nicolas Macris ◽  
Léo Miolane ◽  
Lenka Zdeborová

Generalized linear models (GLMs) are used in high-dimensional machine learning, statistics, communications, and signal processing. In this paper we analyze GLMs when the data matrix is random, as relevant in problems such as compressed sensing, error-correcting codes, or benchmark models in neural networks. We evaluate the mutual information (or “free entropy”) from which we deduce the Bayes-optimal estimation and generalization errors. Our analysis applies to the high-dimensional limit where both the number of samples and the dimension are large and their ratio is fixed. Nonrigorous predictions for the optimal errors existed for special cases of GLMs, e.g., for the perceptron, in the field of statistical physics based on the so-called replica method. Our present paper rigorously establishes those decades-old conjectures and brings forward their algorithmic interpretation in terms of performance of the generalized approximate message-passing algorithm. Furthermore, we tightly characterize, for many learning problems, regions of parameters for which this algorithm achieves the optimal performance and locate the associated sharp phase transitions separating learnable and nonlearnable regions. We believe that this random version of GLMs can serve as a challenging benchmark for multipurpose algorithms.


1982 ◽  
Vol 14 (02) ◽  
pp. 257-271 ◽  
Author(s):  
D. J. Daley ◽  
J. Haslett

The stochastic process {Xn } satisfying Xn +1 = max{Yn +1 + αβ Xn , βXn } where {Yn } is a stationary sequence of non-negative random variables and , 0<β <1, can be regarded as a simple thermal energy storage model with controlled input. Attention is mostly confined to the study of μ = EX where the random variable X has the stationary distribution for {Xn }. Even for special cases such as i.i.d. Yn or α = 0, little explicit information appears to be available on the distribution of X or μ . Accordingly, bounding techniques that have been exploited in queueing theory are used to study μ . The various bounds are illustrated numerically in a range of special cases.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 1048
Author(s):  
Stefan Moser

Closed-form expressions for the expected logarithm and for arbitrary negative integer moments of a noncentral χ2-distributed random variable are presented in the cases of both even and odd degrees of freedom. Moreover, some basic properties of these expectations are derived and tight upper and lower bounds on them are proposed.


1995 ◽  
Vol 9 (4) ◽  
pp. 551-562
Author(s):  
Stephen J. Herschkorn

Let X be a random variable with characteristic function ϕ. In the case where X is integer-valued and n is a positive integer, a formula (in terms of ϕ) for the probability that n divides X is presented. The derivation of this formula is quite simple and uses only the basic properties of expectation and complex numbers. The formula easily generalizes to one for the distribution of X mod n. Computational simplifications and the relation to the inversion formula are also discussed; the latter topic includes a new inversion formula when the range of X is finite.When X may take on a more general distribution, limiting considerations of the previous formulas suggest others for the distribution, density, and moments of the fractional part X — [X]. These are easily derived using basic properties of Fourier series. These formulas also yield an alternative inversion formula for ϕ when the range of X is bounded.Applications to renewal theory and random walks are suggested. A by-product of the approach is a probabilistic method for the evaluation of infinite series.


1999 ◽  
Vol 29 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Virginia R. Young

Christofides (1998) studies the proportional hazards (PH) transform of Wang (1995) and shows that for some parametric families, the PH premium principle reduces to the standard deviation (SD) premium principle. Christofides conjectures that for a parametric family of distributions with constant skewness, the PH premium principle reduces to the SD principle. I will show that this conjecture is false in general but that it is true for location-scale families and for certain other families.Wang's premium principle has been established as a sound measure of risk in Wang (1995, 1996), Wang, Young, and Panjer (1997), and Wang and Young (1998). Determining when the SD premium principle is a special case of Wang's premium principle is important because it will help identify circumstances under which the more easily applied SD premium principle is a reliable measure of risk.First, recall that a distortion g is a non-decreasing function from [0, 1] onto itself. Wang's premium principle, with a fixed distortion g, associates the following certainty equivalent with a random variable X, (Wang, 1996) and (Denneberg, 1994):in which Sx is the decumulative distribution function (ddf) of X, Sx(t) = Pr(X > t), t ∈ R. If g is a power distortion, g(p) = pc, then Hg is the proportional hazards (PH) premium principle (Wang, 1995).Second, recall that a location-scale family of ddfs is , in which Sz is a fixed ddf. Alternatively, if Z has ddf Sz, then {X = μ + σZ: μ∈ R, σ > 0} forms a location-scale family of random variables, and the ddf of . Examples of location-scale families include the normal, Cauchy, logistic, and uniform families (Lehmann, 1991, pp. 20f). In the next proposition, I show that Wang's premium principle reduces to the SD premium principle on a location-scale family. Christofides (1998) observes this phenomenon in several special cases.


2008 ◽  
Vol 22 (3) ◽  
pp. 373-388 ◽  
Author(s):  
Alexander Dukhovny ◽  
Jean-Luc Marichal

The lifetime of a system of connected units under some natural assumptions can be represented as a random variable Y defined as a weighted lattice polynomial of random lifetimes of its components. As such, the concept of a random variable Y defined by a weighted lattice polynomial of (lattice-valued) random variables is considered in general and in some special cases. The central object of interest is the cumulative distribution function of Y. In particular, numerous results are obtained for lattice polynomials and weighted lattice polynomials in the case of independent arguments and in general. For the general case, the technique consists in considering the joint probability generating function of “indicator” variables. A connection is studied between Y and order statistics of the set of arguments.


Sign in / Sign up

Export Citation Format

Share Document