scholarly journals CONTROLLED VIBRATING MILL FOR GRINDING BULK MEDIUM

Author(s):  
Olena Solona

One of the advanced types of grinding equipment are vibrating mills, which provide high specific productivity at relatively low energy consumption, adjustable tone of grinding products. Vibration impact on the product significantly increases the shock-absorbing effect with the possibility of wide and separate variation of shock and abrasion factors. Significant speed of mechanical and heat and mass transfer processes, a high degree of homogeneity of the obtained products, the possibility of efficient fine grinding and dispersion of the product at relatively low energy consumption lead to the widespread use of vibratory grinding. The constructive scheme of the mill is developed, in which the flat vertical vibrating field provides lifting of a part of loading and by means of the transport-reloading device carries out its continuous adjustable movement from one grinding chamber to another, thereby circulating-spatial movement of the environment in which there is a grinding process. shock interaction of grinding bodies and material that is crushed. The priority direction of development of science and technologies at the modern level is the development, creation and implementation of new generation mechatronic systems. One of the most important rules for the construction of vibrating mills is the need to maximize the degree of their automation in order to increase productivity, improve the quality of grinding and reduce the cost of the process. Also in the article the structural model of the controlled vibromill with spatial-circulating loading movement which at change of weight of a working body in the course of separation and unloading of the crushed material from a grinding chamber constantly adapt to a resonant mode of work at the set technologically optimum parameters (productivity) and the minimum power consumption.

1987 ◽  
Vol 19 (3-4) ◽  
pp. 391-400 ◽  
Author(s):  
Zhou Ding ◽  
Cai Wei Min ◽  
Wang Qun Hui

This paper studies the use of bipolar-particles-electrodes in the decolorization of dyeing effluents. Treatment of highly colored solutions of various soluble dyes (such as direct, reactive, cationic or acid dyes) and also samples of dyeing effluents gave rise to an almost colorless transparent liquid, with removal of CODcr and BOD5 being as high as over 80%. The method is characterized by its high efficiency, low energy consumption and long performance life. A discussion of the underlying principle is given.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Nicoleta Cristina Gaitan

Recent market studies show that the market for remote monitoring devices of different medical parameters will grow exponentially. Globally, more than 4 million individuals will be monitored remotely from the perspective of different health parameters by 2023. Of particular importance is the way of remote transmission of the information acquired from the medical sensors. At this time, there are several methods such as Bluetooth, WI-FI, or other wireless communication interfaces. Recently, the communication based on LoRa (Long Range) technology has had an explosive development that allows the transmission of information over long distances with low energy consumption. The implementation of the IoT (Internet of Things) applications using LoRa devices based on open Long Range Wide-Area Network (LoRaWAN) protocol for long distances with low energy consumption can also be used in the medical field. Therefore, in this paper, we proposed and developed a long-distance communication architecture for medical devices based on the LoRaWAN protocol that allows data communications over a distance of more than 10 km.


2021 ◽  
pp. 159774
Author(s):  
Jing-Shuo Liu ◽  
Bao-Yu Song ◽  
Jing Huang ◽  
Zhao-Peng Deng ◽  
Xian-Fa Zhang ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 888
Author(s):  
Helin Fan ◽  
Ruixiang Wang ◽  
Zhifeng Xu ◽  
Huamei Duan ◽  
Dengfu Chen

Synthetic rutile was prepared from titanium slag melt with low energy consumption and a small amount of additive (B2O3) in our previous work. The modification mechanism of titanium slag was not clear enough. The migration and enrichment behaviors of Ca and Mg elements during cooling and crystallization of boron-bearing titanium slag melt were characterized by XRF, FESEM, EMPA, and XPS. Results show that when additive (B2O3) is added, Ti elements are migrated and enriched in the area to generate rutile, while Ca, Mg, and B elements are migrated and enriched in another area to generate borate. With the additive (B2O3) amount increased, Ca and Mg element migration is complete and more thorough. Additive (B2O3) promotes rutile formation and inhibits the formation of anosovite during cooling and crystallization of titanium slag melt. With the additive (B2O3) amount increasing from 0% to 6%, the proportion of Ti3+ in the modified titanium slag reduces from 9.15% to 0%, and the proportion of Ti4+ increases from 90.85% to 100% under the same cooling and crystallization condition. The result will lay the foundation for the efficient preparation of synthetic rutile by adding B2O3 to the titanium slag melt.


Sign in / Sign up

Export Citation Format

Share Document