A Study on the Development of Defense Cost Estimation Model using Machine Learning Algorithm

2021 ◽  
Vol 5 (4) ◽  
pp. 13-28
Author(s):  
Kihong Park
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Soon Bin Kwon ◽  
Yunseo Ku ◽  
Hy uk-soo Han ◽  
Myung Chul Lee ◽  
Hee Chan Kim ◽  
...  

Abstract Knee osteoarthritis (KOA) is characterized by pain and decreased gait function. We aimed to find KOA-related gait features based on patient reported outcome measures (PROMs) and develop regression models using machine learning algorithms to estimate KOA severity. The study included 375 volunteers with variable KOA grades. The severity of KOA was determined using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). WOMAC scores were used to classify disease severity into three groups. A total of 1087 features were extracted from the gait data. An ANOVA and student’s t-test were performed and only features that were significant were selected for inclusion in the machine learning algorithm. Three WOMAC subscales (physical function, pain and stiffness) were further divided into three classes. An ANOVA was performed to determine which selected features were significantly related to the subscales. Both linear regression models and a random forest regression was used to estimate patient the WOMAC scores. Forty-three features were selected based on ANOVA and student’s t-test results. The following number of features were selected from each joint: 12 from hip, 1 feature from pelvic, 17 features from knee, 9 features from ankle, 1 feature from foot, and 3 features from spatiotemporal parameters. A significance level of < 0.0001 and < 0.00003 was set for the ANOVA and t-test, respectively. The physical function, pain, and stiffness subscales were related to 41, 10, and 16 features, respectively. Linear regression models showed a correlation of 0.723 and the machine learning algorithm showed a correlation of 0.741. The severity of KOA was predicted by gait analysis features, which were incorporated to develop an objective estimation model for KOA severity. The identified features may serve as a tool to guide rehabilitation and progress assessments. In addition, the estimation model presented here suggests an approach for clinical application of gait analysis data for KOA evaluation.


2018 ◽  
Author(s):  
C.H.B. van Niftrik ◽  
F. van der Wouden ◽  
V. Staartjes ◽  
J. Fierstra ◽  
M. Stienen ◽  
...  

Author(s):  
Kunal Parikh ◽  
Tanvi Makadia ◽  
Harshil Patel

Dengue is unquestionably one of the biggest health concerns in India and for many other developing countries. Unfortunately, many people have lost their lives because of it. Every year, approximately 390 million dengue infections occur around the world among which 500,000 people are seriously infected and 25,000 people have died annually. Many factors could cause dengue such as temperature, humidity, precipitation, inadequate public health, and many others. In this paper, we are proposing a method to perform predictive analytics on dengue’s dataset using KNN: a machine-learning algorithm. This analysis would help in the prediction of future cases and we could save the lives of many.


2019 ◽  
Vol XVI (4) ◽  
pp. 95-113
Author(s):  
Muhammad Tariq ◽  
Tahir Mehmood

Accurate detection, classification and mitigation of power quality (PQ) distortive events are of utmost importance for electrical utilities and corporations. An integrated mechanism is proposed in this paper for the identification of PQ distortive events. The proposed features are extracted from the waveforms of the distortive events using modified form of Stockwell’s transform. The categories of the distortive events were determined based on these feature values by applying extreme learning machine as an intelligent classifier. The proposed methodology was tested under the influence of both the noisy and noiseless environments on a database of seven thousand five hundred simulated waveforms of distortive events which classify fifteen types of PQ events such as impulses, interruptions, sags and swells, notches, oscillatory transients, harmonics, and flickering as single stage events with their possible integrations. The results of the analysis indicated satisfactory performance of the proposed method in terms of accuracy in classifying the events in addition to its reduced sensitivity under various noisy environments.


Sign in / Sign up

Export Citation Format

Share Document