scholarly journals A class of parabolic evolutionary quasivariational inequalities in contact mechanics

2020 ◽  
Vol 36 (1) ◽  
pp. 45-47
Author(s):  
CHEN TAO ◽  
HUANG NAN-JING ◽  
XIAO YI-BIN

In this paper, we obtain an existence and uniqueness of the solution for a class of parabolic evolutionary quasivariational inequalities in contact mechanics under some mild conditions. We also study an error estimate for the parabolic evolutionary quasivariational inequality by employing the forward Euler difference scheme and the element-free Galerkin spatial approximation.

2018 ◽  
Vol 24 (3) ◽  
pp. 845-861 ◽  
Author(s):  
Zhenhai Liu ◽  
Mircea Sofonea

We consider a new class of differential quasivariational inequalities, i.e. a nonlinear system that couples a differential equation with a time-dependent quasivariational inequality, both defined on abstract Banach spaces. We state and prove a general fixed principle that provides the existence and the uniqueness of the solution of the system. Then we consider a relevant particular setting for which our abstract result holds. We proceed with two examples that arise in Contact Mechanics. For each example, we describe the physical setting, the mathematical model and the assumption on the data. Then we state the variational formulation of each model, which is in the form of a differential quasivariational inequality. Finally, we apply our abstract results to provide the unique weak solvability of the corresponding contact problems.


2002 ◽  
Vol 7 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Mifodijus Sapagovas

Numerous and different nonlocal conditions for the solvability of parabolic equations were researched in many articles and reports. The article presented analyzes such conditions imposed, and observes that the existence and uniqueness of the solution of parabolic equation is related mainly to ”smallness” of functions, involved in nonlocal conditions. As a consequence the hypothesis has been made, stating the assumptions on functions in nonlocal conditions are related to numerical algorithms of solving parabolic equations, and not to the parabolic equation itself.


2014 ◽  
Vol 60 (1-4) ◽  
pp. 87-105 ◽  
Author(s):  
Ryszard Staroszczyk

Abstract The paper is concerned with the problem of gravitational wave propagation in water of variable depth. The problem is solved numerically by applying an element-free Galerkin method. First, the proposed model is validated by comparing its predictions with experimental data for the plane flow in water of uniform depth. Then, as illustrations, results of numerical simulations performed for plane gravity waves propagating through a region with a sloping bed are presented. These results show the evolution of the free-surface elevation, displaying progressive steepening of the wave over the sloping bed, followed by its attenuation in a region of uniform depth. In addition, some of the results of the present model are compared with those obtained earlier by using the conventional finite element method.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Fengbin Liu ◽  
Qiang Wu ◽  
Yumin Cheng

In this study, based on a nonsingular weight function, the improved element-free Galerkin (IEFG) method is presented for solving elastoplastic large deformation problems. By using the improved interpolating moving least-squares (IMLS) method to form the approximation function, and using Galerkin weak form based on total Lagrange formulation of elastoplastic large deformation problems to form the discretilized equations, which is solved with the Newton–Raphson iteration method, we obtain the formulae of the IEFG method for elastoplastic large deformation problems. In numerical examples, the influences of the penalty factor, scale parameter of influence domain and weight functions on the computational accuracy are analyzed, and the numerical solutions show that the IEFG method for elastoplastic large deformation problems has higher computational efficiency and accuracy.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kordan N. Ospanov

AbstractWe give some sufficient conditions for the existence and uniqueness of the solution of a higher-order linear differential equation with unbounded coefficients in the Hilbert space. We obtain some estimates for the weighted norms of the solution and its derivatives. Using these estimates, we show the conditions for the compactness of some integral operators associated with the resolvent.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

AbstractGeneral nonlinear high odd-order differential equations with Lidstone–Euler boundary conditions of second type are treated both theoretically and computationally. First, the associated interpolation problem is considered. Then, a theorem of existence and uniqueness of the solution to the Lidstone–Euler second-type boundary value problem is given. Finally, for a numerical solution, two different approaches are illustrated and some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1219
Author(s):  
Marek T. Malinowski

In this paper, we consider functional set-valued differential equations in their integral representations that possess integrals symmetrically on both sides of the equations. The solutions have values that are the nonempty compact and convex subsets. The main results contain a Peano type theorem on the existence of the solution and a Picard type theorem on the existence and uniqueness of the solution to such equations. The proofs are based on sequences of approximations that are constructed with appropriate Hukuhara differences of sets. An estimate of the magnitude of the solution’s values is provided as well. We show the closeness of the unique solutions when the equations differ slightly.


Sign in / Sign up

Export Citation Format

Share Document