Blending type approximation by generalized Szász type operators based on Charlier polynomials

2018 ◽  
Vol 27 (1) ◽  
pp. 49-56
Author(s):  
ARUN KAJLA ◽  

In the present paper, we introduce a generalized Szasz type operators based on ´ ρ(x) where ρ is a continuously differentiable function on [0, ∞), ρ(0) = 0 and inf ρ 0 (x) ≥ 1, x ∈ [0, ∞). This function not only characterizes the operators but also characterizes the Korovkin set 1, ρ, ρ2 in a weighted function space. First, we establish approximation in a Lipschitz type space and weighted approximation theorems for these operators. Then we obtain a Voronovskaja type result and the rate of convergence in terms of the weighted modulus of continuity.

2021 ◽  
Vol 71 (5) ◽  
pp. 1167-1178
Author(s):  
Sevda Yildiz

Abstract In the present work, we prove a Korovkin theorem for statistical e-convergence on two dimensional weighted spaces. We show that our theorem is a non-trivial extension of some well-known Korovkin type approximation theorems. We also study the rate of statistical e-convergence by using the weighted modulus of continuity and afterwards we present an application in support of our result.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Fuat Usta

AbstractThe purpose of this research is to construct sequences of Baskakov operators such that their construction consists of a function σ by use of two function sequences, $\xi _{n} $ ξ n and $\eta _{n} $ η n . In these operators, σ not only features the sequences of operators but also features the Korovkin function set $\lbrace 1,\sigma ,\sigma ^{2} \rbrace $ { 1 , σ , σ 2 } in a weighted function space such that the operators fix exactly two functions from the set. Thereafter, weighted uniform approximation on an unbounded interval, the degree of approximation with regards to a weighted modulus of continuity, and an asymptotic formula of the new operators are presented. Finally, some illustrative results are provided in order to observe the approximation properties of the newly defined Baskakov operators. The results demonstrate that the introduced operators provide better results in terms of the rate of convergence according to the selection of σ.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Lian-Ta Shu ◽  
Guorong Zhou ◽  
Qing-Bo Cai

We construct a new family of univariate Chlodowsky type Bernstein-Stancu-Schurer operators and bivariate tensor product form. We obtain the estimates of moments and central moments of these operators, obtain weighted approximation theorem, establish local approximation theorems by the usual and the second order modulus of continuity, estimate the rate of convergence, give a convergence theorem for the Lipschitz continuous functions, and also obtain a Voronovskaja-type asymptotic formula. For the bivariate case, we give the rate of convergence by using the weighted modulus of continuity. We also give some graphs and numerical examples to illustrate the convergent properties of these operators to certain functions and show that the new ones have a better approximation to functions f for one dimension.


2020 ◽  
Vol 65 (4) ◽  
pp. 575-583
Author(s):  
Mohammed Arif Siddiqui ◽  
Nandita Gupta

In the present paper we propose a new generalization of Sz\'{a}sz-Mirakjan-type operators. We discuss their weighted convergence and rate of convergence via weighted modulus of continuity. We also give an asymptotic estimate through Voronovskaja type result for these operators.


2017 ◽  
Vol 50 (1) ◽  
pp. 130-143 ◽  
Author(s):  
Pooja Gupta ◽  
Purshottam Narain Agrawal

Abstract The purpose of this paper is to establish the rate of convergence in terms of the weighted modulus of continuity and Lipschitz type maximal function for the q-Szász-beta operators. We also study the rate of A-statistical convergence. Lastly, we modify these operators using King type approach to obtain better approximation.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Md. Nasiruzzaman ◽  
A. F. Aljohani

The purpose of this article is to introduce a Kantorovich variant of Szász-Mirakjan operators by including the Dunkl analogue involving the Appell polynomials, namely, the Szász-Mirakjan-Jakimovski-Leviatan-type positive linear operators. We study the global approximation in terms of uniform modulus of smoothness and calculate the local direct theorems of the rate of convergence with the help of Lipschitz-type maximal functions in weighted space. Furthermore, the Voronovskaja-type approximation theorems of this new operator are also presented.


Filomat ◽  
2016 ◽  
Vol 30 (14) ◽  
pp. 3733-3742 ◽  
Author(s):  
Gürhan İçöz ◽  
Bayram Çekim

We give the Stancu-type generalization of the operators which is given by Erkus-Duman and Duman in this study. We derive approximation theorems via A-statistical Korovkin-type result. We also give rate of convergence of the operators via the modulus of smoothness, the modulus of continuity, and Lipschitz class functional.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Md. Nasiruzzaman ◽  
Abdullah Alotaibi ◽  
M. Mursaleen

AbstractThe main purpose of this research article is to construct a Dunkl extension of $(p,q)$ ( p , q ) -variant of Szász–Beta operators of the second kind by applying a new parameter. We obtain Korovkin-type approximation theorems, local approximations, and weighted approximations. Further, we study the rate of convergence by using the modulus of continuity, Lipschitz class and Peetre’s K-functionals.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lahsen Aharouch ◽  
Khursheed J. Ansari ◽  
M. Mursaleen

We give a Bézier variant of Baskakov-Durrmeyer-type hybrid operators in the present article. First, we obtain the rate of convergence by using Ditzian-Totik modulus of smoothness and also for a class of Lipschitz function. Then, weighted modulus of continuity is investigated too. We study the rate of point-wise convergence for the functions having a derivative of bounded variation. Furthermore, we establish the quantitative Voronovskaja-type formula in terms of Ditzian-Totik modulus of smoothness at the end.


2017 ◽  
Vol 10 (04) ◽  
pp. 1750077 ◽  
Author(s):  
M. Mursaleen ◽  
Md. Nasiruzzaman

In this paper, we construct Kantorovich type Szász–Mirakjan operators generated by Dunkl generalization of the exponential function via [Formula: see text]-integers. We obtain some approximation results via well-known Korovkin’s type theorem for these operators and study convergence properties by using the modulus of continuity. Furthermore, we obtain the rate of convergence in terms of the classical, second-order, and weighted modulus of continuity.


Sign in / Sign up

Export Citation Format

Share Document