scholarly journals Функционирование бортовой интеллектуальной системы на основе комплекса управляемого дистанционного эксперимента

Author(s):  
Yu.I. Nechaev ◽  
O.N. Petrov

Рассматривается повышение эффективности функционирования бортовой интеллектуальной системы (ИС) при использовании комплекса управляемого дистанционного эксперимента (УДЭ). Такая технология интеллектуальной поддержки обеспечивают анализ и прогноз развития экстремальных ситуаций на основе данных физического моделирования и динамической модели современной теории катастроф (СТК), интегрирующей интеллектуальных технологии и высокопроизводительные вычисления. Особенности построения комплекса УДЭ связаны с развитием новых подходов к интеграции знаний сложных систем в эволюционирующей нестационарной среде. Программный комплекс УДЭ представляет собой активную динамическую систему (АДС), обеспечивающую оперативный контроль динамики судна на основе взаимодействия динамической базы знаний бортовой ИС и комплекса УДЭ в режиме экстренных вычислений (Urgent Computing UC) 1 8. Динамика взаимодействия имитируется с помощью системы управления, реализующей физические эффекты в процессе развития аварийной ситуации. Приведены примеры реализации разработанной стратегии при контроле экстремальных ситуаций в бортовых ИС новых поколений.An increase in the functioning efficiency of an onboard intellectual system (IS) when using a complex of controlled remote experiment (CRE) is considered. Such intellectual support technology provides analysis and forecast of the development of extreme situations on the basis of physical modeling data and a dynamic model of modern catastrophe theory (MCT), integrating intellectual technologies and high-performance computing. The features of constructing the CRE complex are associated with the development of new approaches to the integration of knowledge of complex systems in an evolving non-stationary environment. The CRE software package is an active dynamic system (ADS) that provides operational control of the vessels dynamics based on the interaction of the onboard intellectual system dynamic knowledge base and the CRE complex in urgent computing mode (Urgent Computing - UC) 1 - 8. The dynamics of interaction is simulated using a control system that implements physical effects in the process of emergency situation evolution. Examples of the implementation of the developed strategy for the control of extreme situations in the onboard intellectual systems of new generations are given.

Author(s):  
Yu.I. Nechaev ◽  
O.N. Petrov

Рассматривается интеллектуальная технология управления процессом контроля динамической непотопляемости с использованием центра дистанционного управления (ЦДУ). Технология обеспечивает анализ и прогноз развития экстремальной ситуации, связанной с затоплением отсеков беспилотного судна, находящегося в условиях нестационарного воздействия ветроволновых возмущений. Оперативный контроль динамики аварийного судна в заданных условиях эксплуатации производится при поддержке модуля ЦДУ многофункционального программного комплекса (МПК) моделирования нестационарной динамики аварийного судна на основе динамической модели современной теории катастроф (СТК), интегрирующей интеллектуальных технологии и высокопроизводительные вычисления. Особенности функционирования ЦДУ при контроле нестационарной динамики аварийного судна беспилотного управления связаны с развитием новых подходов к интеграции знаний сложных динамических систем в эволюционирующей среде. Программный комплекс ЦДУ представляет собой активную динамическую систему (АДС), обеспечивающую оперативный контроль поведения транспортного потока в экстремальных ситуациях в режиме экстренных вычислений (Urgent Computing UC) 1 9. Стратегические решения оперативного контроля аварийной ситуации беспилотного судна рассмотрены применительно к модельной ситуации в условиях катастрофического затопления.Intellectual technology for controlling dynamic unsinkability control using a remote control center (RCC) is considered. The technology provides an analysis and prediction of the development of an extreme situation associated with the flooding of the compartments of an unmanned vessel, which is under the non-stationary influence of wind and wave disturbances. Operational monitoring of the dynamics of an emergency vessel under specified operating conditions is carried out with the support of the RCC module - a multifunctional software package (MSP) for modeling the unsteady dynamics of an emergency vessel based on the dynamic model of modern catastrophe theory (MCT), integrating intellectual technologies and high-performance computing. Peculiarities of the functioning of the RCC during the control of the non-stationary dynamics of an emergency unmanned vessel are associated with the development of new approaches to the integration of knowledge of complex dynamic systems in an evolving environment. The software complex is an active dynamic system (ADS), providing operational control of the behavior of the traffic flow in extreme situations in urgent computing mode (UC) 1 - 9. Strategic decisions for the operational control of the emergency situation of an unmanned vessel are considered in relation to the model situation in the conditions of catastrophic flooding.


2021 ◽  
Author(s):  
Christopher J Neely ◽  
Sarah K Hu ◽  
Harriet Alexander ◽  
Benjamin J Tully

Gene prediction and annotation for eukaryotic genomes is challenging with large data demands and complex computational requirements. For most eukaryotes, genomes are recovered from specific target taxa. However, it is now feasible to reconstruct or sequence hundreds of metagenome-assembled genomes (MAGs) or single-amplified genomes directly from the environment. To meet this forthcoming wave of eukaryotic genome generation, we introduce EukMetaSanity, which combines state-of-the-art tools into three pipelines that have been specifically designed for extensive parallelization on high-performance computing infrastructure. EukMetaSanity performs an automated taxonomy search against a protein database of 1,482 species to identify phylogenetically compatible proteins to be used in downstream gene prediction. We present the results for intron, exon, and gene locus prediction for 112 genomes collected from NCBI, including fungi, plants, and animals, along with 1,669 MAGs and demonstrate that EukMetaSanity can provide reliable preliminary gene predictions for a single target taxon or at scale for hundreds of MAGs. EukMetaSanity is freely available at https://github.com/cjneely10/EukMetaSanity.


Author(s):  
Roby Lynn ◽  
Kathryn Jablokow ◽  
Nithin Reddy ◽  
Christopher Saldana ◽  
Tommy Tucker ◽  
...  

Engineering students are often unaware of manufacturing challenges introduced during the design process. Students tend to design parts that are either very difficult or impossible to manufacture because they are unaware of the intricacies and limitations of the manufacturing processes available. Design for manufacturability (DFM) education must be improved to help address this issue. This work discusses a vision for the implementation of a rapid method for facilitating DFM education in terms of subtractive and additive manufacturing processes. The goal is to teach students about how their designs impact the ease and cost of manufacturing, in addition to giving them knowledge and confidence to move fluidly between additive and subtractive manufacturing mindsets. For subtractive manufacturing, this is accomplished through a high-performance-computing accelerated and parallelized trajectory planning software package that enables students to visualize the subtractive manufacturability of the parts they design as rapidly as they get feedback when using additive manufacturing processes. Implementation of the subtractive manufacturability analysis tool in a sophomore-level design class is presented, along with the assessment of the students’ conceptual manufacturing-related understanding.


Author(s):  
Mark H. Ellisman

The increased availability of High Performance Computing and Communications (HPCC) offers scientists and students the potential for effective remote interactive use of centralized, specialized, and expensive instrumentation and computers. Examples of instruments capable of remote operation that may be usefully controlled from a distance are increasing. Some in current use include telescopes, networks of remote geophysical sensing devices and more recently, the intermediate high voltage electron microscope developed at the San Diego Microscopy and Imaging Resource (SDMIR) in La Jolla. In this presentation the imaging capabilities of a specially designed JEOL 4000EX IVEM will be described. This instrument was developed mainly to facilitate the extraction of 3-dimensional information from thick sections. In addition, progress will be described on a project now underway to develop a more advanced version of the Telemicroscopy software we previously demonstrated as a tool to for providing remote access to this IVEM (Mercurio et al., 1992; Fan et al., 1992).


MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 5-6
Author(s):  
Horst D. Simon

Recent events in the high-performance computing industry have concerned scientists and the general public regarding a crisis or a lack of leadership in the field. That concern is understandable considering the industry's history from 1993 to 1996. Cray Research, the historic leader in supercomputing technology, was unable to survive financially as an independent company and was acquired by Silicon Graphics. Two ambitious new companies that introduced new technologies in the late 1980s and early 1990s—Thinking Machines and Kendall Square Research—were commercial failures and went out of business. And Intel, which introduced its Paragon supercomputer in 1994, discontinued production only two years later.During the same time frame, scientists who had finished the laborious task of writing scientific codes to run on vector parallel supercomputers learned that those codes would have to be rewritten if they were to run on the next-generation, highly parallel architecture. Scientists who are not yet involved in high-performance computing are understandably hesitant about committing their time and energy to such an apparently unstable enterprise.However, beneath the commercial chaos of the last several years, a technological revolution has been occurring. The good news is that the revolution is over, leading to five to ten years of predictable stability, steady improvements in system performance, and increased productivity for scientific applications. It is time for scientists who were sitting on the fence to jump in and reap the benefits of the new technology.


Sign in / Sign up

Export Citation Format

Share Document