scholarly journals Edge-Magic Group Labellings of Countable Graphs

10.37236/1118 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Nicholas Cavenagh ◽  
Diana Combe ◽  
Adrian M. Nelson

We investigate the existence of edge-magic labellings of countably infinite graphs by abelian groups. We show for that for a large class of abelian groups, including the integers ${\Bbb Z}$, there is such a labelling whenever the graph has an infinite set of disjoint edges. A graph without an infinite set of disjoint edges must be some subgraph of $H + {\cal I}$, where $H$ is some finite graph and ${\cal I}$ is a countable set of isolated vertices. Using power series of rational functions, we show that any edge-magic ${\Bbb Z}$-labelling of $H + {\cal I}$ has almost all vertex labels making up pairs of half-modulus classes. We also classify all possible edge-magic ${\Bbb Z}$-labellings of $H + {\cal I}$ under the assumption that the vertices of the finite graph are labelled consecutively.

1987 ◽  
Vol 52 (3) ◽  
pp. 817-818 ◽  
Author(s):  
Randall Dougherty

A subset of the Cantor space ω2 is called monotone iff it is closed upward under the partial ordering ≤ defined by x ≤ y iff x(n) ≤ y(n) for all n ∈ ω. A set is -positive (-positive) iff it is monotone and -positive set is a countable union of -positive sets; a -positive set is a countable intersection of -positive sets. (See Cenzer [2] for background information on these concepts.) It is clear that any -positive set is and monotone; the converse holds for n ≤ 2 [2] and was conjectured by Dyck to hold for greater n. In this note, we will disprove this conjecture by giving examples of monotone sets (for n ≥ 3) which are not even -positive.First we note a few isomorphisms. The space (ω2, ≤) is isomorphic to the space (ω2 ≥), so instead of monotone and positive sets we may construct hereditary and negative sets (the analogous notions with “closed upward” replaced by “closed downward”). Also, (ω2, ≤) is isomorphic to ((ω), ⊆), where denotes the power set operator, or to ((S), ⊆) for any countably infinite set S.In order to remove extraneous notation from the proofs, we state the results in an abstract form (whose generality is deceptive).


10.37236/394 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Ryan Martin ◽  
Brendon Stanton

An $r$-identifying code on a graph $G$ is a set $C\subset V(G)$ such that for every vertex in $V(G)$, the intersection of the radius-$r$ closed neighborhood with $C$ is nonempty and unique. On a finite graph, the density of a code is $|C|/|V(G)|$, which naturally extends to a definition of density in certain infinite graphs which are locally finite. We present new lower bounds for densities of codes for some small values of $r$ in both the square and hexagonal grids.


2017 ◽  
Vol 82 (2) ◽  
pp. 576-589 ◽  
Author(s):  
KOSTAS HATZIKIRIAKOU ◽  
STEPHEN G. SIMPSON

AbstractLetSbe the group of finitely supported permutations of a countably infinite set. Let$K[S]$be the group algebra ofSover a fieldKof characteristic 0. According to a theorem of Formanek and Lawrence,$K[S]$satisfies the ascending chain condition for two-sided ideals. We study the reverse mathematics of this theorem, proving its equivalence over$RC{A_0}$(or even over$RCA_0^{\rm{*}}$) to the statement that${\omega ^\omega }$is well ordered. Our equivalence proof proceeds via the statement that the Young diagrams form a well partial ordering.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1293
Author(s):  
Sharwin Rezagholi

We analyze symbolic dynamics to infinite alphabets by endowing the alphabet with the cofinite topology. The topological entropy is shown to be equal to the supremum of the growth rate of the complexity function with respect to finite subalphabets. For the case of topological Markov chains induced by countably infinite graphs, our approach yields the same entropy as the approach of Gurevich We give formulae for the entropy of countable topological Markov chains in terms of the spectral radius in l2.


1998 ◽  
Vol 41 (2) ◽  
pp. 166-177 ◽  
Author(s):  
A. Hof

AbstractIn Bernoulli site percolation on Penrose tilings there are two natural definitions of the critical probability. This paper shows that they are equal on almost all Penrose tilings. It also shows that for almost all Penrose tilings the number of infinite clusters is almost surely 0 or 1. The results generalize to percolation on a large class of aperiodic tilings in arbitrary dimension, to percolation on ergodic subgraphs of ℤd, and to other percolation processes, including Bernoulli bond percolation.


2017 ◽  
Vol 69 (02) ◽  
pp. 408-433 ◽  
Author(s):  
Igor Klep ◽  
Špela Špenko

Abstract This paper concerns free function theory. Freemaps are free analogs of analytic functions in several complex variables and are defined in terms of freely noncommuting variables. A function of g noncommuting variables is a function on g-tuples of square matrices of all sizes that respects direct sums and simultaneous conjugation. Examples of such maps include noncommutative polynomials, noncommutative rational functions, and convergent noncommutative power series. In sharp contrast to the existing literature in free analysis, this article investigates free maps with involution, free analogs of real analytic functions. To get a grip on these, techniques and tools from invariant theory are developed and applied to free analysis. Here is a sample of the results obtained. A characterization of polynomial free maps via properties of their finite-dimensional slices is presented and then used to establish power series expansions for analytic free maps about scalar and non-scalar points; the latter are series of generalized polynomials for which an invarianttheoretic characterization is given. Furthermore, an inverse and implicit function theorem for free maps with involution is obtained. Finally, with a selection of carefully chosen examples it is shown that free maps with involution do not exhibit strong rigidity properties enjoyed by their involutionfree counterparts.


Author(s):  
Daniele Mundici

An AF algebra [Formula: see text] is said to be an AF[Formula: see text] algebra if the Murray–von Neumann order of its projections is a lattice. Many, if not most, of the interesting classes of AF algebras existing in the literature are AF[Formula: see text] algebras. We construct an algorithm which, on input a finite presentation (by generators and relations) of the Elliott semigroup of an AF[Formula: see text] algebra [Formula: see text], generates a Bratteli diagram of [Formula: see text] We generalize this result to the case when [Formula: see text] has an infinite presentation with a decidable word problem, in the sense of the classical theory of recursive group presentations. Applications are given to a large class of AF algebras, including almost all AF algebras whose Bratteli diagram is explicitly described in the literature. The core of our main algorithms is a combinatorial-polyhedral version of the De Concini–Procesi theorem on the elimination of points of indeterminacy in toric varieties.


2020 ◽  
Vol 27 (03) ◽  
pp. 495-508
Author(s):  
Ahmed Maatallah ◽  
Ali Benhissi

Let A be a ring. In this paper we generalize some results introduced by Aliabad and Mohamadian. We give a relation between the z-ideals of A and those of the formal power series rings in an infinite set of indeterminates over A. Consider A[[XΛ]]3 and its subrings A[[XΛ]]1, A[[XΛ]]2, and A[[XΛ]]α, where α is an infinite cardinal number. In fact, a z-ideal of the rings defined above is of the form I + (XΛ)i, where i = 1, 2, 3 or an infinite cardinal number and I is a z-ideal of A. In addition, we prove that the same condition given by Aliabad and Mohamadian can be used to get a relation between the minimal prime ideals of the ring of the formal power series in an infinite set of indeterminates and those of the ring of coefficients. As a natural result, we get a relation between the z°-ideals of the formal power series ring in an infinite set of indeterminates and those of the ring of coefficients.


1961 ◽  
Vol 4 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Joachim Lambek

This is an expository note to show how an “infinite abacus” (to be defined presently) can be programmed to compute any computable (recursive) function. Our method is probably not new, at any rate, it was suggested by the ingenious technique of Melzak [2] and may be regarded as a modification of the latter.By an infinite abacus we shall understand a countably infinite set of locations (holes, wires etc.) together with an unlimited supply of counters (pebbles, beads etc.). The locations are distinguishable, the counters are not. The confirmed finitist need not worry about these two infinitudes: To compute any given computable function only a finite number of locations will be used, and this number does not depend on the argument (or arguments) of the function.


Sign in / Sign up

Export Citation Format

Share Document