scholarly journals Counting Nondecreasing Integer Sequences that Lie Below a Barrier

10.37236/149 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Robin Pemantle ◽  
Herbert S. Wilf

Given a barrier $0 \leq b_0 \leq b_1 \leq \cdots$, let $f(n)$ be the number of nondecreasing integer sequences $0 \leq a_0 \leq a_1 \leq \cdots \leq a_n$ for which $a_j \leq b_j$ for all $0 \leq j \leq n$. Known formulæ for $f(n)$ include an $n \times n$ determinant whose entries are binomial coefficients (Kreweras, 1965) and, in the special case of $b_j = rj+s$, a short explicit formula (Proctor, 1988, p.320). A relatively easy bivariate recursion, decomposing all sequences according to $n$ and $a_n$, leads to a bivariate generating function, then a univariate generating function, then a linear recursion for $\{ f(n) \}$. Moreover, the coefficients of the bivariate generating function have a probabilistic interpretation, leading to an analytic inequality which is an identity for certain values of its argument.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 600 ◽  
Author(s):  
Yuriy Shablya ◽  
Dmitry Kruchinin

In this paper, we study such combinatorial objects as labeled binary trees of size n with m ascents on the left branch and labeled Dyck n-paths with m ascents on return steps. For these combinatorial objects, we present the relation of the generated number triangle to Catalan’s and Euler’s triangles. On the basis of properties of Catalan’s and Euler’s triangles, we obtain an explicit formula that counts the total number of such combinatorial objects and a bivariate generating function. Combining the properties of these two number triangles allows us to obtain different combinatorial objects that may have a symmetry, for example, in their form or in their formulas.



2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.



1971 ◽  
Vol 8 (04) ◽  
pp. 708-715 ◽  
Author(s):  
Emlyn H. Lloyd

The present theory of finite reservoirs is not rich in general theorems even when of the simple Moran type, with unit draft and stationary discrete independent-sequence inflows. For the corresponding systems with unbounded capacity however there are two classes of results which have been known for some time. One of these classes is concerned with the time-dependent solution, where the theory provides a functional equation for the generating function of the time to first emptiness (Kendall (1957)), and the other with the asymptotic stationary distribution of reservoir contents, for which an explicit formula for the generating function is available (Moran (1959)).



2018 ◽  
Vol 26 (1) ◽  
pp. 169-187 ◽  
Author(s):  
Hamzeh Mujahed ◽  
Benedek Nagy

Abstract Similarly to Wiener index, hyper-Wiener index of a connected graph is a widely applied topological index measuring the compactness of the structure described by the given graph. Hyper-Wiener index is the sum of the distances plus the squares of distances between all unordered pairs of vertices of a graph. These indices are used for predicting physicochemical properties of organic compounds. In this paper, the graphs of lines of unit cells of the face-centred cubic lattice are investigated. The graphs of face-centred cubic lattice contain cube points and face centres. Using mathematical induction, closed formulae are obtained to calculate the sum of distances between pairs of cube points, between face centres and between cube points and face centres. The sum of these formulae gives the hyper-Wiener index of graphs representing face-centred cubic grid with unit cells connected in a row. In connection to integer sequences, a recurrence relation is presented based on binomial coefficients.



1965 ◽  
Vol 14 (4) ◽  
pp. 333-338 ◽  
Author(s):  
Harry Gonshor

We shall extend some of the results of (7) to the case of multiple alleles, our primary concern being that of polyploidy combined with multiple alleles. Generalisations often tend to make the computations more involved as is expected. Fortunately here, the attempt to generalise has led to a new method which not only handles the case of multiple alleles, but is an improvement over the method used in (7) for the special case of polyploidy with two alleles. This method which consists essentially of expressing certain elements of the algebra in a so-called “ factored ” form, gives greater insight into the structure of a polyploidy algebra, and avoids a great deal of the computation with binomial coefficients, e.g. see (7), p. 46.



2019 ◽  
Vol 295 (1-2) ◽  
pp. 427-462 ◽  
Author(s):  
Emmanuel Bultot ◽  
Johannes Nicaise

Abstract We give an explicit formula for the motivic zeta function in terms of a log smooth model. It generalizes the classical formulas for snc-models, but it gives rise to much fewer candidate poles, in general. This formula plays an essential role in recent work on motivic zeta functions of degenerating Calabi–Yau varieties by the second-named author and his collaborators. As a further illustration, we explain how the formula for Newton non-degenerate polynomials can be viewed as a special case of our results.



Integers ◽  
2009 ◽  
Vol 9 (2) ◽  
Author(s):  
Paul Shaman

AbstractThe Levinson–Durbin recursion is used to construct the coefficients which define the minimum mean square error predictor of a new observation for a discrete time, second-order stationary stochastic process. As the sample size varies, the coefficients determine what is called a Levinson–Durbin sequence. A generalized Levinson–Durbin sequence is also defined, and we note that binomial coefficients constitute a special case of such a sequence. Generalized Levinson–Durbin sequences obey formulas which generalize relations satisfied by binomial coefficients. Some of these results are extended to vector stationary processes.



1974 ◽  
Vol 6 (2) ◽  
pp. 322-335 ◽  
Author(s):  
Alan Agresti

The class of fractional linear generating functions, one of the few known classes of probability generating functions whose iterates can be explicitly stated, is examined. The method of bounding a probability generating function g (satisfying g″(1) < ∞) by two fractional linear generating functions is used to derive bounds for the extinction time distribution of the Galton-Watson branching process with offspring probability distribution represented by g. For the special case of the Poisson probability generating function, the best possible bounding fractional linear generating functions are obtained, and the bounds for the expected time to extinction of the corresponding Poisson branching process are better than any previously published.



2012 ◽  
Vol 2012 ◽  
pp. 1-17
Author(s):  
Ju-Mok Oh ◽  
Yunjae Kim ◽  
Kyung-Won Hwang

We give an explicit formula for the number of chains of subgroups in the lattice of subgroups of the dicyclic groupB4nof order4nby finding its generating function of multivariables.



Sign in / Sign up

Export Citation Format

Share Document