scholarly journals Continued Fractions and Catalan Problems

10.37236/1523 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Mahendra Jani ◽  
Robert G. Rieper

We find a generating function expressed as a continued fraction that enumerates ordered trees by the number of vertices at different levels. Several Catalan problems are mapped to an ordered-tree problem and their generating functions also expressed as a continued fraction. Among these problems is the enumeration of $(132)$-pattern avoiding permutations that have a given number of increasing patterns of length $k$. This extends and illuminates a result of Robertson, Wilf and Zeilberger for the case $k=3$.

2019 ◽  
Vol 149 (03) ◽  
pp. 831-847 ◽  
Author(s):  
Bao-Xuan Zhu

AbstractGiven a sequence of polynomials$\{x_k(q)\}_{k \ges 0}$, define the transformation$$y_n(q) = a^n\sum\limits_{i = 0}^n {\left( \matrix{n \cr i} \right)} b^{n-i}x_i(q)$$for$n\ges 0$. In this paper, we obtain the relation between the Jacobi continued fraction of the ordinary generating function ofyn(q) and that ofxn(q). We also prove that the transformation preservesq-TPr+1(q-TP) property of the Hankel matrix$[x_{i+j}(q)]_{i,j \ges 0}$, in particular forr= 2,3, implying ther-q-log-convexity of the sequence$\{y_n(q)\}_{n\ges 0}$. As applications, we can give the continued fraction expressions of Eulerian polynomials of typesAandB, derangement polynomials typesAandB, general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. In addition, we also prove the strongq-log-convexity of derangement polynomials typeB, Dowling polynomials and Tanny-geometric polynomials and 3-q-log-convexity of general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. We also present a new proof of the result of Pólya and Szegö about the binomial convolution preserving the Stieltjes moment property and a new proof of the result of Zhu and Sun on the binomial transformation preserving strongq-log-convexity.


10.37236/1470 ◽  
1999 ◽  
Vol 6 (1) ◽  
Author(s):  
Aaron Robertson ◽  
Herbert S. Wilf ◽  
Doron Zeilberger

We find, in the form of a continued fraction, the generating function for the number of $(132)$-avoiding permutations that have a given number of $(123)$ patterns, and show how to extend this to permutations that have exactly one $(132)$ pattern. We also find some properties of the continued fraction, which is similar to, though more general than, those that were studied by Ramanujan.


10.37236/2034 ◽  
2012 ◽  
Vol 18 (2) ◽  
Author(s):  
Dennis E. Davenport ◽  
Louis W. Shapiro ◽  
Leon C. Woodson

The Riordan group is a group of infinite lower triangular matrices that are defined by two generating functions, $g$ and $f$. The kth column of the matrix has the generating function $gf^k$. In the Double Riordan group there are two generating function $f_1$ and $f_2$ such that the columns, starting at the left, have generating functions using $f_1$ and $f_2$ alternately. Examples include Dyck paths with level steps of length 2  allowed at even height and also ordered trees with differing degree possibilities at even and odd height(perhaps representing summer and winter). The Double Riordan group is a generalization not of the Riordan group itself but of the checkerboard subgroup. In this context both familiar and far less familiar sequences occur such as the Motzkin numbers and the number of spoiled child trees. The latter is a slightly enhanced cousin of ordered trees which are counted by the Catalan numbers.


10.37236/1495 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Toufik Mansour ◽  
Alek Vainshtein

Let $f_n^r(k)$ be the number of 132-avoiding permutations on $n$ letters that contain exactly $r$ occurrences of $12\dots k$, and let $F_r(x;k)$ and $F(x,y;k)$ be the generating functions defined by $F_r(x;k)=\sum_{n\ge 0} f_n^r(k)x^n$ and $F(x,y;k)=\sum_{r\ge 0}F_r(x;k)y^r$. We find an explicit expression for $F(x,y;k)$ in the form of a continued fraction. This allows us to express $F_r(x;k)$ for $1\le r\le k$ via Chebyshev polynomials of the second kind.


10.37236/1691 ◽  
2003 ◽  
Vol 9 (2) ◽  
Author(s):  
Mireille Bousquet-Mélou

Many families of pattern-avoiding permutations can be described by a generating tree in which each node carries one integer label, computed recursively via a rewriting rule. A typical example is that of $123$-avoiding permutations. The rewriting rule automatically gives a functional equation satisfied by the bivariate generating function that counts the permutations by their length and the label of the corresponding node of the tree. These equations are now well understood, and their solutions are always algebraic series. Several other families of permutations can be described by a generating tree in which each node carries two integer labels. To these trees correspond other functional equations, defining 3-variate generating functions. We propose an approach to solving such equations. We thus recover and refine, in a unified way, some results on Baxter permutations, $1234$-avoiding permutations, $2143$-avoiding (or: vexillary) involutions and $54321$-avoiding involutions. All the generating functions we obtain are D-finite, and, more precisely, are diagonals of algebraic series. Vexillary involutions are exceptionally simple: they are counted by Motzkin numbers, and thus have an algebraic generating function. In passing, we exhibit an interesting link between Baxter permutations and the Tutte polynomial of planar maps.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1161
Author(s):  
Hari Mohan Srivastava ◽  
Sama Arjika

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and the basic (or q-) hypergeometric polynomials are studied extensively and widely due mainly to their potential for applications in many areas of mathematical and physical sciences. Here, in this paper, we introduce a general family of q-hypergeometric polynomials and investigate several q-series identities such as an extended generating function and a Srivastava-Agarwal type bilinear generating function for this family of q-hypergeometric polynomials. We give a transformational identity involving generating functions for the generalized q-hypergeometric polynomials which we have introduced here. We also point out relevant connections of the various q-results, which we investigate here, with those in several related earlier works on this subject. We conclude this paper by remarking that it will be a rather trivial and inconsequential exercise to give the so-called (p,q)-variations of the q-results, which we have investigated here, because the additional parameter p is obviously redundant.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 255
Author(s):  
Dan Lascu ◽  
Gabriela Ileana Sebe

We investigate the efficiency of several types of continued fraction expansions of a number in the unit interval using a generalization of Lochs theorem from 1964. Thus, we aim to compare the efficiency by describing the rate at which the digits of one number-theoretic expansion determine those of another. We study Chan’s continued fractions, θ-expansions, N-continued fractions, and Rényi-type continued fractions. A central role in fulfilling our goal is played by the entropy of the absolutely continuous invariant probability measures of the associated dynamical systems.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 840
Author(s):  
Maxim Sølund Kirsebom

The Hurwitz complex continued fraction is a generalization of the nearest integer continued fraction. In this paper, we prove various results concerning extremes of the modulus of Hurwitz complex continued fraction digits. This includes a Poisson law and an extreme value law. The results are based on cusp estimates of the invariant measure about which information is still limited. In the process, we obtained several results concerning the extremes of nearest integer continued fractions as well.


1979 ◽  
Vol 89 ◽  
pp. 95-101
Author(s):  
S. Mikkola

A continued fraction was derived for the summation of the asymptotic expansion of astronomical refraction. Using simple approximations for the last denominator of the fraction, accurate formulae, useful down to the horizon, were obtained. The method is not restricted to any model of the atmosphere and can thus be used in calculations based on actual aerological measurements.


10.37236/2014 ◽  
2011 ◽  
Vol 18 (2) ◽  
Author(s):  
Helmut Prodinger

For the $q$-tangent function introduced by Foata and Han (this volume) we provide the continued fraction expansion, by creative guessing and a routine verification. Then an even more recent $q$-tangent function due to Cieslinski is also expanded. Lastly, a general version is considered that contains both versions as special cases.


Sign in / Sign up

Export Citation Format

Share Document