scholarly journals The Spectral Gap of Random Graphs with Given Expected Degrees

10.37236/227 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Amin Coja-Oghlan ◽  
André Lanka

We investigate the Laplacian eigenvalues of a random graph $G(n,\vec d)$ with a given expected degree distribution $\vec d$. The main result is that w.h.p. $G(n,\vec d)$ has a large subgraph core$(G(n,\vec d))$ such that the spectral gap of the normalized Laplacian of core$(G(n,\vec d))$ is $\geq1-c_0\bar d_{\min}^{-1/2}$ with high probability; here $c_0>0$ is a constant, and $\bar d_{\min}$ signifies the minimum expected degree. The result in particular applies to sparse graphs with $\bar d_{\min}=O(1)$ as $n\rightarrow\infty$. The present paper complements the work of Chung, Lu, and Vu [Internet Mathematics 1, 2003].

Algorithmica ◽  
2020 ◽  
Vol 82 (11) ◽  
pp. 3338-3389
Author(s):  
Ankit Chauhan ◽  
Tobias Friedrich ◽  
Ralf Rothenberger

Abstract Large real-world networks typically follow a power-law degree distribution. To study such networks, numerous random graph models have been proposed. However, real-world networks are not drawn at random. Therefore, Brach et al. (27th symposium on discrete algorithms (SODA), pp 1306–1325, 2016) introduced two natural deterministic conditions: (1) a power-law upper bound on the degree distribution (PLB-U) and (2) power-law neighborhoods, that is, the degree distribution of neighbors of each vertex is also upper bounded by a power law (PLB-N). They showed that many real-world networks satisfy both properties and exploit them to design faster algorithms for a number of classical graph problems. We complement their work by showing that some well-studied random graph models exhibit both of the mentioned PLB properties. PLB-U and PLB-N hold with high probability for Chung–Lu Random Graphs and Geometric Inhomogeneous Random Graphs and almost surely for Hyperbolic Random Graphs. As a consequence, all results of Brach et al. also hold with high probability or almost surely for those random graph classes. In the second part we study three classical $$\textsf {NP}$$ NP -hard optimization problems on PLB networks. It is known that on general graphs with maximum degree $$\Delta$$ Δ , a greedy algorithm, which chooses nodes in the order of their degree, only achieves a $$\Omega (\ln \Delta )$$ Ω ( ln Δ ) -approximation for Minimum Vertex Cover and Minimum Dominating Set, and a $$\Omega (\Delta )$$ Ω ( Δ ) -approximation for Maximum Independent Set. We prove that the PLB-U property with $$\beta >2$$ β > 2 suffices for the greedy approach to achieve a constant-factor approximation for all three problems. We also show that these problems are -hard even if PLB-U, PLB-N, and an additional power-law lower bound on the degree distribution hold. Hence, a PTAS cannot be expected unless = . Furthermore, we prove that all three problems are in if the PLB-U property holds.


2007 ◽  
Vol 16 (6) ◽  
pp. 923-946 ◽  
Author(s):  
AMIN COJA-OGHLAN

We investigate the Laplacian eigenvalues of sparse random graphs Gnp. We show that in the case that the expected degree d = (n-1)p is bounded, the spectral gap of the normalized Laplacian $\LL(\gnp)$ is o(1). Nonetheless, w.h.p. G = Gnp has a large subgraph core(G) such that the spectral gap of $\LL(\core(G))$ is as large as 1-O (d−1/2). We derive similar results regarding the spectrum of the combinatorial Laplacian L(Gnp). The present paper complements the work of Chung, Lu and Vu [8] on the Laplacian spectra of random graphs with given expected degree sequences. Applied to Gnp, their results imply that in the ‘dense’ case d ≥ ln2n the spectral gap of $\LL(\gnp)$ is 1-O (d−1/2) w.h.p.


10.37236/5327 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Deepak Bal ◽  
Patrick Bennett ◽  
Andrzej Dudek ◽  
Paweł Prałat

Let $G$ be a graph in which each vertex initially has weight 1. In each step, the weight from a vertex $u$ to a neighbouring vertex $v$ can be moved, provided that the weight on $v$ is at least as large as the weight on $u$. The total acquisition number of $G$, denoted by $a_t(G)$, is the minimum possible size of the set of vertices with positive weight at the end of the process.LeSaulnier, Prince, Wenger, West, and Worah asked for the minimum value of $p=p(n)$ such that $a_t(\mathcal{G}(n,p)) = 1$ with high probability, where $\mathcal{G}(n,p)$ is a binomial random graph. We show that $p = \frac{\log_2 n}{n} \approx 1.4427 \ \frac{\log n}{n}$ is a sharp threshold for this property. We also show that almost all trees $T$ satisfy $a_t(T) = \Theta(n)$, confirming a conjecture of West.


10.37236/1497 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Tom Bohman ◽  
Alan Frieze ◽  
Miklós Ruszinkó ◽  
Lubos Thoma

It is shown in this note that with high probability it is enough to destroy all triangles in order to get a cover graph from a random graph $G_{n,p}$ with $p\le \kappa \log n/n$ for any constant $\kappa < 2/3$. On the other hand, this is not true for somewhat higher densities: If $p\ge \lambda (\log n)^3 / (n\log\log n)$ with $\lambda > 1/8$ then with high probability we need to delete more edges than one from every triangle. Our result has a natural algorithmic interpretation.


Author(s):  
Thomas Bläsius ◽  
Philipp Fischbeck ◽  
Tobias Friedrich ◽  
Maximilian Katzmann

AbstractThe computational complexity of the VertexCover problem has been studied extensively. Most notably, it is NP-complete to find an optimal solution and typically NP-hard to find an approximation with reasonable factors. In contrast, recent experiments suggest that on many real-world networks the run time to solve VertexCover is way smaller than even the best known FPT-approaches can explain. We link these observations to two properties that are observed in many real-world networks, namely a heterogeneous degree distribution and high clustering. To formalize these properties and explain the observed behavior, we analyze how a branch-and-reduce algorithm performs on hyperbolic random graphs, which have become increasingly popular for modeling real-world networks. In fact, we are able to show that the VertexCover problem on hyperbolic random graphs can be solved in polynomial time, with high probability. The proof relies on interesting structural properties of hyperbolic random graphs. Since these predictions of the model are interesting in their own right, we conducted experiments on real-world networks showing that these properties are also observed in practice.


2016 ◽  
Vol 113 (44) ◽  
pp. 12368-12373 ◽  
Author(s):  
Alfredo Braunstein ◽  
Luca Dall’Asta ◽  
Guilhem Semerjian ◽  
Lenka Zdeborová

We study the network dismantling problem, which consists of determining a minimal set of vertices in which removal leaves the network broken into connected components of subextensive size. For a large class of random graphs, this problem is tightly connected to the decycling problem (the removal of vertices, leaving the graph acyclic). Exploiting this connection and recent works on epidemic spreading, we present precise predictions for the minimal size of a dismantling set in a large random graph with a prescribed (light-tailed) degree distribution. Building on the statistical mechanics perspective, we propose a three-stage Min-Sum algorithm for efficiently dismantling networks, including heavy-tailed ones for which the dismantling and decycling problems are not equivalent. We also provide additional insights into the dismantling problem, concluding that it is an intrinsically collective problem and that optimal dismantling sets cannot be viewed as a collection of individually well-performing nodes.


10.37236/3285 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Deepak Bal ◽  
Alan Frieze ◽  
Michael Krivelevich ◽  
Po-Shen Loh

For a fixed graph $H$ with $t$ vertices, an $H$-factor of a graph $G$ with $n$ vertices, where $t$ divides $n$, is a collection of vertex disjoint (not necessarily induced) copies of $H$ in $G$ covering all vertices of $G$. We prove that for a fixed tree $T$ on $t$ vertices and $\epsilon>0$, the random graph $G_{n,p}$, with $n$ a multiple of $t$, with high probability contains a family of edge-disjoint $T$-factors covering all but an $\epsilon$-fraction of its edges, as long as $\epsilon^4 n p \gg \log^2 n$. Assuming stronger divisibility conditions, the edge probability can be taken down to $p>\frac{C\log n}{n}$. A similar packing result is proved also for pseudo-random graphs, defined in terms of their degrees and co-degrees.


2020 ◽  
Author(s):  
Shalin Shah

<p>Consumer behavior in retail stores gives rise to product graphs based on copurchasing</p><p>or co-viewing behavior. These product graphs can be analyzed using</p><p>the known methods of graph analysis. In this paper, we analyze the product graph</p><p>at Target Corporation based on the Erd˝os-Renyi random graph model. In particular,</p><p>we compute clustering coefficients of actual and random graphs, and we find that</p><p>the clustering coefficients of actual graphs are much higher than random graphs.</p><p>We conduct the analysis on the entire set of products and also on a per category</p><p>basis and find interesting results. We also compute the degree distribution and</p><p>we find that the degree distribution is a power law as expected from real world</p><p>networks, contrasting with the ER random graph.</p>


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Konstantinos Panagiotou

International audience This work is devoted to the study of typical properties of random graphs from classes with structural constraints, like for example planar graphs, with the additional restriction that the average degree is fixed. More precisely, within a general analytic framework, we provide sharp concentration results for the number of blocks (maximal biconnected subgraphs) in a random graph from the class in question. Among other results, we discover that essentially such a random graph belongs with high probability to only one of two possible types: it either has blocks of at most logarithmic size, or there is a \emphgiant block that contains linearly many vertices, and all other blocks are significantly smaller. This extends and generalizes the results in the previous work [K. Panagiotou and A. Steger. Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '09), pp. 432-440, 2009], where similar statements were shown without the restriction on the average degree.


2015 ◽  
Vol 25 (3) ◽  
pp. 436-447 ◽  
Author(s):  
JUSTIN SALEZ

We consider large random graphs with prescribed degrees, as generated by the configuration model. In the regime where the empirical degree distribution approaches a limit μ with finite mean, we establish the systematic convergence of a broad class of graph parameters that includes the independence number, the maximum cut size, the logarithm of the Tutte polynomial, and the free energy of the anti-ferromagnetic Ising and Potts models. Contrary to previous works, our results are not a priori limited to the free energy of some prescribed graphical model. They apply more generally to any additive, Lipschitz and concave graph parameter. In addition, the corresponding limits are shown to be Lipschitz and concave in the degree distribution μ. This considerably extends the applicability of the celebrated interpolation method, introduced in the context of spin glasses, and recently related to the challenging question of right-convergence of sparse graphs.


Sign in / Sign up

Export Citation Format

Share Document