scholarly journals On some Generalized $q$-Eulerian Polynomials

10.37236/2927 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhicong Lin

The $(q,r)$-Eulerian polynomials are the (maj-exc,fix,exc) enumerative polynomials of permutations. Using Shareshian and Wachs' exponential generating function of these Eulerian polynomials, Chung and Graham proved two symmetrical $q$-Eulerian identities and asked for bijective proofs. We provide such proofs using Foata and Han's three-variable statistic (inv-lec,pix,lec). We also prove a new recurrence formula for the $(q,r)$-Eulerian polynomials and study a $q$-analogue of Chung and Graham's restricted descent polynomials. In particular, we obtain a generalized symmetrical identity for these restricted $q$-Eulerian polynomials with a combinatorial proof.


Author(s):  
E. M. Wright

SynopsisAn (n, q) graph is a graph on n labelled points and q lines without loops or multiple lines. We write ν(n, q) for the number of smooth (n, q) graphs, i.e. connected graphs without end points, and ν = V(Z, Y) = ∑n,q ν(n,q)ZnYq /n! for the exponential generating function of ν(n,q). We use the Riddell “core and mantle” method to find an explicit form for V (not, as usual with this method, only a functional equation). From this we deduce a partial differential equation satisfied by V. We interpret this equation in purely combinatorial terms. We write Vk = ∑ n ν(n, n + k)Xn/n! and find a recurrence formula for Vk for successive k. We use these and other results to find an asymptotic expansion for ν(n,q) as n→∞ when (q/n) − log n − log log n→ + ∞ and an asymptotic approximation to ν(n,n + k) when 0 < k = o and to log ν(n, n + k) when k < (1−ε).



2014 ◽  
Vol 60 (1) ◽  
pp. 19-36
Author(s):  
Dae San Kim

Abstract We derive eight identities of symmetry in three variables related to generalized twisted Bernoulli polynomials and generalized twisted power sums, both of which are twisted by ramified roots of unity. All of these are new, since there have been results only about identities of symmetry in two variables. The derivations of identities are based on the p-adic integral expression of the generating function for the generalized twisted Bernoulli polynomials and the quotient of p-adic integrals that can be expressed as the exponential generating function for the generalized twisted power sums.



10.37236/81 ◽  
2009 ◽  
Vol 16 (2) ◽  
Author(s):  
William Y. C. Chen ◽  
Robert L. Tang ◽  
Alina F. Y. Zhao

Based on the notion of excedances of type $B$ introduced by Brenti, we give a type $B$ analogue of the derangement polynomials. The connection between the derangement polynomials and Eulerian polynomials naturally extends to the type $B$ case. Using this relation, we derive some basic properties of the derangement polynomials of type $B$, including the generating function formula, the Sturm sequence property, and the asymptotic normal distribution. We also show that the derangement polynomials are almost symmetric in the sense that the coefficients possess the spiral property.



10.37236/2153 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Masanori Ando

In this paper, we give combinatorial proofs and new generalizations of $q$-series identities of Dilcher and Uchimura related to divisor function. Some interesting combinatorial results related to partition and arm-length are also presented.



10.37236/5514 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Anna Borowiec ◽  
Wojciech Młotkowski

We introduce a new array of type $D$ Eulerian numbers, different from that studied by Brenti, Chow and Hyatt. We find in particular the recurrence relation, Worpitzky formula and the generating function. We also find the probability distributions whose moments are Eulerian polynomials of type $A$, $B$ and $D$.



2018 ◽  
Vol 68 (4) ◽  
pp. 727-740 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck

Abstract In this paper, we consider a polynomial generalization, denoted by $\begin{array}{} u_m^{a,b} \end{array}$ (n, k), of the restricted Stirling numbers of the first and second kind, which reduces to these numbers when a = 1 and b = 0 or when a = 0 and b = 1, respectively. If a = b = 1, then $\begin{array}{} u_m^{a,b} \end{array}$ (n, k) gives the cardinality of the set of Lah distributions on n distinct objects in which no block has cardinality exceeding m with k blocks altogether. We derive several combinatorial properties satisfied by $\begin{array}{} u_m^{a,b} \end{array}$ (n, k) and some additional properties in the case when a = b = 1. Our results not only generalize previous formulas found for the restricted Stirling numbers of both kinds but also yield apparently new formulas for these numbers in several cases. Finally, an exponential generating function formula is derived for $\begin{array}{} u_m^{a,b} \end{array}$ (n, k) as well as for the associated Cauchy numbers.



2019 ◽  
Vol 149 (03) ◽  
pp. 831-847 ◽  
Author(s):  
Bao-Xuan Zhu

AbstractGiven a sequence of polynomials$\{x_k(q)\}_{k \ges 0}$, define the transformation$$y_n(q) = a^n\sum\limits_{i = 0}^n {\left( \matrix{n \cr i} \right)} b^{n-i}x_i(q)$$for$n\ges 0$. In this paper, we obtain the relation between the Jacobi continued fraction of the ordinary generating function ofyn(q) and that ofxn(q). We also prove that the transformation preservesq-TPr+1(q-TP) property of the Hankel matrix$[x_{i+j}(q)]_{i,j \ges 0}$, in particular forr= 2,3, implying ther-q-log-convexity of the sequence$\{y_n(q)\}_{n\ges 0}$. As applications, we can give the continued fraction expressions of Eulerian polynomials of typesAandB, derangement polynomials typesAandB, general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. In addition, we also prove the strongq-log-convexity of derangement polynomials typeB, Dowling polynomials and Tanny-geometric polynomials and 3-q-log-convexity of general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. We also present a new proof of the result of Pólya and Szegö about the binomial convolution preserving the Stieltjes moment property and a new proof of the result of Zhu and Sun on the binomial transformation preserving strongq-log-convexity.



2009 ◽  
Vol 18 (4) ◽  
pp. 583-599 ◽  
Author(s):  
COLIN McDIARMID

A minor-closed class of graphs is addable if each excluded minor is 2-connected. We see that such a classof labelled graphs has smooth growth; and, for the random graphRnsampled uniformly from then-vertex graphs in, the fragment not in the giant component asymptotically has a simple ‘Boltzmann Poisson distribution’. In particular, asn→ ∞ the probability thatRnis connected tends to 1/A(ρ), whereA(x) is the exponential generating function forand ρ is its radius of convergence.



10.37236/564 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Toufik Mansour ◽  
Matthias Schork ◽  
Mark Shattuck

A new family of generalized Stirling and Bell numbers is introduced by considering powers $(VU)^n$ of the noncommuting variables $U,V$ satisfying $UV=VU+hV^s$. The case $s=0$ (and $h=1$) corresponds to the conventional Stirling numbers of second kind and Bell numbers. For these generalized Stirling numbers, the recursion relation is given and explicit expressions are derived. Furthermore, they are shown to be connection coefficients and a combinatorial interpretation in terms of statistics is given. It is also shown that these Stirling numbers can be interpreted as $s$-rook numbers introduced by Goldman and Haglund. For the associated generalized Bell numbers, the recursion relation as well as a closed form for the exponential generating function is derived. Furthermore, an analogue of Dobinski's formula is given for these Bell numbers.



10.37236/681 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Dustin A. Cartwright ◽  
María Angélica Cueto ◽  
Enrique A. Tobis

The nodes of the de Bruijn graph $B(d,3)$ consist of all strings of length $3$, taken from an alphabet of size $d$, with edges between words which are distinct substrings of a word of length $4$. We give an inductive characterization of the maximum independent sets of the de Bruijn graphs $B(d,3)$ and for the de Bruijn graph of diameter three with loops removed, for arbitrary alphabet size. We derive a recurrence relation and an exponential generating function for their number. This recurrence allows us to construct exponentially many comma-free codes of length 3 with maximal cardinality.



Sign in / Sign up

Export Citation Format

Share Document