scholarly journals Locally Convex Words and Permutations

10.37236/5396 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Christopher Coscia ◽  
Jonathan DeWitt

We introduce some new classes of words and permutations characterized by the second difference condition $\pi(i-1) + \pi(i+1) - 2\pi(i) \leq k$, which we call the $k$-convexity condition. We demonstrate that for any sized alphabet and convexity parameter $k$, we may find a generating function which counts $k$-convex words of length $n$. We also determine a formula for the number of 0-convex words on any fixed-size alphabet for sufficiently large $n$ by exhibiting a connection to integer partitions. For permutations, we give an explicit solution in the case $k = 0$ and show that the number of 1-convex and 2-convex permutations of length $n$ are $\Theta(C_1^n)$ and $\Theta(C_2^n)$, respectively, and use the transfer matrix method to give tight bounds on the constants $C_1$ and $C_2$. We also providing generating functions similar to the the continued fraction generating functions studied by Odlyzko and Wilf in the "coins in a fountain" problem.

Author(s):  
Kunle Adegoke

We study various properties of the polygonal numbers; such as their recurrence relations; fundamental identities; weighted binomial and ordinary sums; partial sums and generating functions of their powers; and a continued fraction representation for them. A feature of our results is that they are presented naturally in terms of the polygonal numbers themselves and not in terms of arbitrary integers; unlike what obtains in most literature.


2014 ◽  
Vol 23 (6) ◽  
pp. 1057-1086 ◽  
Author(s):  
PETER J. GRABNER ◽  
ARNOLD KNOPFMACHER ◽  
STEPHAN WAGNER

We consider statistical properties of random integer partitions. In order to compute means, variances and higher moments of various partition statistics, one often has to study generating functions of the form P(x)F(x), where P(x) is the generating function for the number of partitions. In this paper, we show how asymptotic expansions can be obtained in a quasi-automatic way from expansions of F(x) around x = 1, which parallels the classical singularity analysis of Flajolet and Odlyzko in many ways. Numerous examples from the literature, as well as some new statistics, are treated via this methodology. In addition, we show how to compute further terms in the asymptotic expansions of previously studied partition statistics.


2019 ◽  
Vol 7 ◽  
Author(s):  
DANIEL M. KANE ◽  
ROBERT C. RHOADES

Our main result establishes Andrews’ conjecture for the asymptotic of the generating function for the number of integer partitions of$n$without$k$consecutive parts. The methods we develop are applicable in obtaining asymptotics for stochastic processes that avoid patterns; as a result they yield asymptotics for the number of partitions that avoid patterns.Holroyd, Liggett, and Romik, in connection with certain bootstrap percolation models, introduced the study of partitions without$k$consecutive parts. Andrews showed that when$k=2$, the generating function for these partitions is a mixed-mock modular form and, thus, has modularity properties which can be utilized in the study of this generating function. For$k>2$, the asymptotic properties of the generating functions have proved more difficult to obtain. Using$q$-series identities and the$k=2$case as evidence, Andrews stated a conjecture for the asymptotic behavior. Extensive computational evidence for the conjecture in the case$k=3$was given by Zagier.This paper improved upon early approaches to this problem by identifying and overcoming two sources of error. Since the writing of this paper, a more precise asymptotic result was established by Bringmann, Kane, Parry, and Rhoades. That approach uses very different methods.


1990 ◽  
Vol 27 (2) ◽  
pp. 251-258 ◽  
Author(s):  
A. W. Kemp ◽  
J. Newton

The paper re-examines Quinn and MacGillivray's (1986) stationary birth-death process for a population of fixed size N consisting of two types of parasite, active and passive, and sets up a more elaborate model for the dichotomy between parasites on hosts with and without open wounds resulting from previous parasite attacks. The probability generating functions for the stationary count distributions are obtained, allowing limiting forms of the distributions to be investigated.


10.37236/1059 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Anisse Kasraoui ◽  
Jiang Zeng

We construct an involution on set partitions which keeps track of the numbers of crossings, nestings and alignments of two edges. We derive then the symmetric distribution of the numbers of crossings and nestings in partitions, which generalizes a recent result of Klazar and Noy in perfect matchings. By factorizing our involution through bijections between set partitions and some path diagrams we obtain the continued fraction expansions of the corresponding ordinary generating functions.


Author(s):  
S. Capparelli ◽  
A. Del Fra ◽  
P. Mercuri ◽  
A. Vietri

Abstract In the work of Alladi et al. (J Algebra 174:636–658, 1995) the authors provided a generalization of the two Capparelli identities involving certain classes of integer partitions. Inspired by that contribution, in particular as regards the general setting and the tools the authors employed, we obtain new partition identities by identifying further sets of partitions that can be explicitly put into a one-to-one correspondence by the method described in the 1995 paper. As a further result, although of a different nature, we obtain an analytical identity of Rogers–Ramanujan type, involving generating functions, for a class of partition identities already found in that paper and that generalize the first Capparelli identity and include it as a particular case. To achieve this, we apply the same strategy as Kanade and Russell did in a recent paper. This method relies on the use of jagged partitions that can be seen as a more general kind of integer partitions.


10.37236/1523 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Mahendra Jani ◽  
Robert G. Rieper

We find a generating function expressed as a continued fraction that enumerates ordered trees by the number of vertices at different levels. Several Catalan problems are mapped to an ordered-tree problem and their generating functions also expressed as a continued fraction. Among these problems is the enumeration of $(132)$-pattern avoiding permutations that have a given number of increasing patterns of length $k$. This extends and illuminates a result of Robertson, Wilf and Zeilberger for the case $k=3$.


Author(s):  
MEIYING LÜ ◽  
ZHENLIANG ZHANG

Abstract For any x in $[0,1)$ , let $[a_1(x),a_2(x),a_3(x),\ldots ]$ be its continued fraction. Let $\psi :\mathbb {N}\to \mathbb {R}^+$ be such that $\psi (n) \to \infty $ as $n\to \infty $ . For any positive integers s and t, we study the set $$ \begin{align*}E(\psi)=\{(x,y)\in [0,1)^2: \max\{a_{sn}(x), a_{tn}(y)\}\ge \psi(n) \ {\text{for all sufficiently large}}\ n\in \mathbb{N}\} \end{align*} $$ and determine its Hausdorff dimension.


Sign in / Sign up

Export Citation Format

Share Document