scholarly journals Recurrence Relations for the Linear Transformation Preserving the Strong $q$-Log-Convexity

10.37236/5913 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Lily Li Liu ◽  
Ya-Nan Li

Let $[T(n,k)]_{n,k\geqslant0}$ be a triangle of positive numbers satisfying the three-term recurrence relation\[T(n,k)=(a_1n+a_2k+a_3)T(n-1,k)+(b_1n+b_2k+b_3)T(n-1,k-1).\]In this paper, we give a new sufficient condition for linear transformations\[Z_n(q)=\sum_{k=0}^{n}T(n,k)X_k(q)\]that preserves the strong $q$-log-convexity of polynomials sequences. As applications, we show linear transformations, given by matrices of the binomial coefficients, the Stirling numbers of the first kind and second kind, the Whitney numbers of the first kind and second kind, preserving the strong $q$-log-convexity in a unified manner.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 309-320 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad Cakic ◽  
F.A. Shiha

In this paper we give a new family of numbers, called ??-Whitney numbers, which gives generalization of many types of Whitney numbers and Stirling numbers. Some basic properties of these numbers such as recurrence relations, explicit formulas and generating functions are given. Finally many interesting special cases are derived.



1998 ◽  
Vol 29 (3) ◽  
pp. 227-232
Author(s):  
GUANG ZHANG ◽  
SUI-SUN CHENG

Qualitative properties of recurrence relations with coefficients taking on both positive and negative values are difficult to obtain since mathematical tools are scarce. In this note we start from scratch and obtain a number of oscillation criteria for one such relation : $x_{n+1}-x_n+p_nx_{n-r}\le 0$.



10.37236/5168 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
Bao-Xuan Zhu ◽  
Hua Sun

In this paper, we give a sufficient condition for the linear transformation preserving the strong $q$-log-convexity. As applications, we get some linear transformations (for instance, Morgan-Voyce transformation, binomial transformation, Narayana transformations of two kinds) preserving the strong $q$-log-convexity. In addition, our results not only extend some known results, but also imply the strong $q$-log-convexities of some sequences of polynomials.



2020 ◽  
Vol 26 (4) ◽  
pp. 164-172
Author(s):  
Kunle Adegoke ◽  
◽  
Adenike Olatinwo ◽  
Winning Oyekanmi ◽  
◽  
...  

Only one three-term recurrence relation, namely, W_{r}=2W_{r-1}-W_{r-4}, is known for the generalized Tribonacci numbers, W_r, r\in Z, defined by W_{r}=W_{r-1}+W_{r-2}+W_{r-3} and W_{-r}=W_{-r+3}-W_{-r+2}-W_{-r+1}, where W_0, W_1 and W_2 are given, arbitrary integers, not all zero. Also, only one four-term addition formula is known for these numbers, which is W_{r + s} = T_{s - 1} W_{r - 1} + (T_{s - 1} + T_{s-2} )W_r + T_s W_{r + 1}, where ({T_r})_{r\in Z} is the Tribonacci sequence, a special case of the generalized Tribonacci sequence, with W_0 = T_0 = 0 and W_1 = W_2 = T_1 = T_2 = 1. In this paper we discover three new three-term recurrence relations and two identities from which a plethora of new addition formulas for the generalized Tribonacci numbers may be discovered. We obtain a simple relation connecting the Tribonacci numbers and the Tribonacci–Lucas numbers. Finally, we derive quadratic and cubic recurrence relations for the generalized Tribonacci numbers.



Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 931-943 ◽  
Author(s):  
B. El-Desouky ◽  
F.A. Shiha ◽  
Ethar Shokr

In this paper, we define the multiparameter r-Whitney numbers of the first and second kind. The recurrence relations, generating functions , explicit formulas of these numbers and some combinatorial identities are derived. Some relations between these numbers and generalized Stirling numbers of the first and second kind, Lah numbers, C-numbers and harmonic numbers are deduced. Furthermore, some interesting special cases are given. Finally matrix representation for these relations are given.



2021 ◽  
Vol 14 (1) ◽  
pp. 65-81
Author(s):  
Roberto Bagsarsa Corcino ◽  
Jay Ontolan ◽  
Maria Rowena Lobrigas

In this paper, a q-analogue of r-Whitney-Lah numbers, also known as (q,r)-Whitney-Lah number, denoted by $L_{m,r} [n, k]_q$ is defined using the triangular recurrence relation. Several fundamental properties for the q-analogue are established such as vertical and horizontal recurrence relations, horizontal and exponential generating functions. Moreover, an explicit formula for (q, r)-Whitney-Lah number is derived using the concept of q-difference operator, particularly, the q-analogue of Newton’s Interpolation Formula (the umbral version of Taylor series). Furthermore, an explicit formula for the first form (q, r)-Dowling numbers is obtained which is expressed in terms of (q,r)-Whitney-Lah numbers and (q,r)-Whitney numbers of the second kind.



Author(s):  
Gradimir Milovanovic ◽  
Aleksandar Cvetkovic

In this paper we are concerned with polynomials orthogonal with respect to the generalized Hermite weight function w(x) = |x ? z|? exp(?x2) on R, where z?R and ? > ? 1. We give a numerically stable method for finding recursion coefficients in the three term recurrence relation for such orthogonal polynomials, using some nonlinear recurrence relations, asymptotic expansions, as well as the discretized Stieltjes-Gautschi procedure.



2010 ◽  
Vol 17 (3) ◽  
pp. 581-596
Author(s):  
Mabrouk Sghaier

Abstract We study properties of the form (linear functional) u = λ(x – a)–1 ν + δb , where ν is a regular form. We give a necessary and sufficient condition for the regularity of the form u. The coefficients of a three-term recurrence relation, satisfied by the corresponding sequence of orthogonal polynomials, are given explicitly. The semi-classical character of the founded families is studied. We conclude by giving some examples.



2004 ◽  
Vol 88 (513) ◽  
pp. 447-456 ◽  
Author(s):  
Barry Lewis

Pascal's triangle, the Binomial expansion and the recurrence relation between its entries are all inextricably linked. In the normal course of events, the Binomial expansion leads to Pascal's Triangle, and thence to the recurrence relation between its entries. In this article we are going to reverse this process to make it possible to explore a particular type of generalisation of such interlinked structures, by generalising the recurrence relation and then exploring the resulting generalised ‘Pascal Triangle’ and ‘Binomial expansion’. Within the spectrum of generalisations considered, we find exactly four of particular significance: those concerned with the Binomial coefficients, the Stirling numbers of both kinds, and a lesser known set of numbers – the Lah numbers. We also examine the combinatorial properties of the entries in these triangles and a prime number divisibility property that they all share. Thereby, we achieve a remarkable synthesis of these different entities.



Author(s):  
Richard Askey ◽  
J. A. Wilson

AbstractA three term recurrence relation is found forwhen a + d = b + c. This includes the recurrence relations of Apéry associated with ζ(3), ζ(2) and log 2 as special or limiting cases.



Sign in / Sign up

Export Citation Format

Share Document