scholarly journals Avoiding Fractional Powers over the Natural Numbers

10.37236/6678 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Lara Pudwell ◽  
Eric Rowland

We study the lexicographically least infinite $a/b$-power-free word on the alphabet of non-negative integers. Frequently this word is a fixed point of a uniform morphism, or closely related to one. For example, the lexicographically least $7/4$-power-free word is a fixed point of a $50847$-uniform morphism. We identify the structure of the lexicographically least $a/b$-power-free word for three infinite families of rationals $a/b$ as well many "sporadic" rationals that do not seem to belong to general families. To accomplish this, we develop an automated procedure for proving $a/b$-power-freeness for morphisms of a certain form, both for explicit and symbolic rational numbers $a/b$. Finally, we establish a connection to words on a finite alphabet. Namely, the lexicographically least $27/23$-power-free word is in fact a word on the finite alphabet $\{0, 1, 2\}$, and its sequence of letters is $353$-automatic.

1992 ◽  
Vol 57 (3) ◽  
pp. 1108-1119 ◽  
Author(s):  
Gerhard Jäger ◽  
Barbara Primo

AbstractThis paper presents several proof-theoretic results concerning weak fixed point theories over second order number theory with arithmetic comprehension and full or restricted induction on the natural numbers. It is also shown that there are natural second order theories which are proof-theoretically equivalent but have different proof-theoretic ordinals.


Author(s):  
John Stillwell

This chapter describes how one proceeds from natural to rational numbers, then to real and complex numbers, and to continuous functions—thus arithmetizing the foundations of analysis and geometry. The definitions of integers and rational numbers show why questions about them can, in principle, be reduced to questions about natural numbers and their addition and multiplication. This is what it means to say that the natural numbers are a foundation for the integer and rational numbers. But the next steps in the arithmetization project go beyond algebra. By admitting sets of rational numbers, one can enlarge the number system to one that admits certain infinite operations, such as forming infinite sums. This is crucial to building a foundation for analysis. As such, the chapter turns to the foundations of the natural numbers themselves, the “Peano axioms,” which gives a first glimpse of the logic underlying the arithmetization project.


2010 ◽  
Vol 22 (10) ◽  
pp. 2615-2646 ◽  
Author(s):  
Jun Wang ◽  
Hendrik Jan Hoogeboom ◽  
Linqiang Pan ◽  
Gheorghe Păun ◽  
Mario J. Pérez-Jiménez

A variant of spiking neural P systems with positive or negative weights on synapses is introduced, where the rules of a neuron fire when the potential of that neuron equals a given value. The involved values—weights, firing thresholds, potential consumed by each rule—can be real (computable) numbers, rational numbers, integers, and natural numbers. The power of the obtained systems is investigated. For instance, it is proved that integers (very restricted: 1, −1 for weights, 1 and 2 for firing thresholds, and as parameters in the rules) suffice for computing all Turing computable sets of numbers in both the generative and the accepting modes. When only natural numbers are used, a characterization of the family of semilinear sets of numbers is obtained. It is shown that spiking neural P systems with weights can efficiently solve computationally hard problems in a nondeterministic way. Some open problems and suggestions for further research are formulated.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Serik Altynbek ◽  
Heinrich Begehr

Abstract Double sequences appear in a natural way in cases of iteratively given sequences if the iteration allows to determine besides the successors from the predecessors also the predecessors from their followers. A particular pair of double sequences is considered which appears in a parqueting-reflection process of the complex plane. While one end of each sequence is a natural number sequence, the other consists of rational numbers. The natural numbers sequences are not yet listed in OEIS Wiki. Complex versions from the double sequences are provided.


2021 ◽  
Vol 44 ◽  
Author(s):  
Eli Hecht ◽  
Tracey Mills ◽  
Steven Shin ◽  
Jonathan Phillips

Abstract In contrast to Clarke and Beck's claim that that the approximate number system (ANS) represents rational numbers, we argue for a more modest alternative: The ANS represents natural numbers, and there are separate, non-numeric processes that can be used to represent ratios across a wide range of domains, including natural numbers.


2018 ◽  
Vol 373 (1740) ◽  
pp. 20160519 ◽  
Author(s):  
Jennifer A. Jacobs Danan ◽  
Rochel Gelman

A great many students at a major research university make basic conceptual mistakes in responding to simple questions about two successive percentage changes. The mistakes they make follow a pattern already familiar from research on the difficulties that elementary school students have in coming to terms with fractions and decimals. The intuitive core knowledge of arithmetic with the natural numbers makes learning to count and do simple arithmetic relatively easy. Those same principles become obstacles to understanding how to operate with rational numbers. This article is part of a discussion meeting issue ‘The origins of numerical abilities’.


2014 ◽  
Vol 35 (6) ◽  
pp. 1767-1782
Author(s):  
JAMES D. CURRIE ◽  
NARAD RAMPERSAD ◽  
KALLE SAARI

Let $A$ be a finite alphabet and $f:~A^{\ast }\rightarrow A^{\ast }$ be a morphism with an iterative fixed point $f^{{\it\omega}}({\it\alpha})$, where ${\it\alpha}\in A$. Consider the subshift $({\mathcal{X}},T)$, where ${\mathcal{X}}$ is the shift orbit closure of $f^{{\it\omega}}({\it\alpha})$ and $T:~{\mathcal{X}}\rightarrow {\mathcal{X}}$ is the shift map. Let $S$ be a finite alphabet that is in bijective correspondence via a mapping $c$ with the set of non-empty suffixes of the images $f(a)$ for $a\in A$. Let ${\mathcal{S}}\subset S^{\mathbb{N}}$ be the set of infinite words $\mathbf{s}=(s_{n})_{n\geq 0}$ such that ${\it\pi}(\mathbf{s}):=c(s_{0})f(c(s_{1}))f^{2}(c(s_{2}))\cdots \in {\mathcal{X}}$. We show that if $f$ is primitive, $f^{{\it\omega}}({\it\alpha})$ is aperiodic, and $f(A)$ is a suffix code, then there exists a mapping $H:~{\mathcal{S}}\rightarrow {\mathcal{S}}$ such that $({\mathcal{S}},H)$ is a topological dynamical system and ${\it\pi}:~({\mathcal{S}},H)\rightarrow ({\mathcal{X}},T)$ is a conjugacy; we call $({\mathcal{S}},H)$ the suffix conjugate of $({\mathcal{X}},T)$. In the special case where $f$ is the Fibonacci or Thue–Morse morphism, we show that the subshift $({\mathcal{S}},T)$ is sofic, that is, the language of ${\mathcal{S}}$ is regular.


Sign in / Sign up

Export Citation Format

Share Document