scholarly journals Vertex Colouring Edge Weightings: a Logarithmic Upper Bound on Weight-Choosability

10.37236/6878 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Kasper Szabo Lyngsie ◽  
Liang Zhong

A graph $G$ is said to be $(k,m)$-choosable if for any assignment of $k$-element lists $L_v \subset \mathbb{R}$ to the vertices $v \in V(G)$ and any assignment of $m$-element lists $L_e \subset \mathbb{R}$ to the edges $e \in E(G)$  there exists a total weighting $w: V(G) \cup E(G) \rightarrow \mathbb{R}$ of $G$ such that $w(v) \in L_v$ for any vertex $v \in V(G)$ and $w(e) \in L_e$ for any edge $e \in E(G)$ and furthermore, such that for any pair of adjacent vertices $u,v$, we have $w(u)+ \sum_{e \in E(u)}w(e) \neq w(v)+ \sum_{e \in E(v)}w(e)$, where $E(u)$ and $E(v)$ denote the edges incident to $u$ and $v$ respectively. In this paper we give an algorithmic proof showing that any graph $G$ without isolated edges is $(1, 2 \lceil \log_2(\Delta(G)) \rceil+1)$-choosable, where $\Delta(G)$ denotes the maximum degree in $G$.


10.37236/7451 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Ralph Keusch

We study the two-player game where Maker and Breaker alternately color the edges of a given graph $G$ with $k$ colors such that adjacent edges never get the same color. Maker's goal is to play such that at the end of the game, all edges are colored. Vice-versa, Breaker wins as soon as there is an uncolored edge where every color is blocked. The game chromatic index $\chi'_g(G)$ denotes the smallest $k$ for which Maker has a winning strategy.The trivial bounds $\Delta(G) \le \chi_g'(G) \le 2\Delta(G)-1$ hold for every graph $G$, where $\Delta(G)$ is the maximum degree of $G$. Beveridge, Bohman, Frieze, and Pikhurko conjectured that there exists a constant $c>0$ such that for any graph $G$ it holds $\chi'_g(G) \le (2-c)\Delta(G)$ [Theoretical Computer Science 2008], and verified the statement for all $\delta>0$ and all graphs with $\Delta(G) \ge (\frac12+\delta)|V(G)|$. In this paper, we show that $\chi'_g(G) \le (2-c)\Delta(G)$ is true for all graphs $G$ with $\Delta(G) \ge C \log |V(G)|$. In addition, we consider a biased version of the game where Breaker is allowed to color $b$ edges per turn and give bounds on the number of colors needed for Maker to win this biased game.



10.37236/6362 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mohammad Hadi Shekarriz

We consider infinite graphs. The distinguishing number $D(G)$ of a graph $G$ is the minimum number of colours in a vertex colouring of $G$ that is preserved only by the trivial automorphism. An analogous invariant for edge colourings is called the distinguishing index, denoted by $D'(G)$. We prove that $D'(G)\leq D(G)+1$. For proper colourings, we study relevant invariants called the distinguishing chromatic number $\chi_D(G)$, and the distinguishing chromatic index $\chi'_D(G)$, for vertex and edge colourings, respectively. We show that $\chi_D(G)\leq 2\Delta(G)-1$ for graphs with a finite maximum degree $\Delta(G)$, and we obtain substantially lower bounds for some classes of graphs with infinite motion. We also show that $\chi'_D(G)\leq \chi'(G)+1$, where $\chi'(G)$ is the chromatic index of $G$, and we prove a similar result $\chi''_D(G)\leq \chi''(G)+1$ for proper total colourings. A number of conjectures are formulated.



10.37236/8886 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mariusz Woźniak

A vertex colouring of a graph is asymmetric if it is preserved only by the identity automorphism. The minimum number of colours needed for an asymmetric colouring of a graph $G$ is called the asymmetric colouring number or distinguishing number $D(G)$ of $G$. It is well known that $D(G)$ is closely related to the least number of vertices moved by any non-identity automorphism, the so-called motion $m(G)$ of $G$. Large motion is usually correlated with small $D(G)$. Recently, Babai posed the question whether there exists a function $f(d)$ such that every connected, countable graph $G$ with maximum degree $\Delta(G)\leq d$ and motion $m(G)>f(d)$ has an asymmetric $2$-colouring, with at most finitely many exceptions for every degree. We prove the following result: if $G$ is a connected, countable graph of maximum degree at most 4, without an induced claw $K_{1,3}$, then $D(G)= 2$ whenever $m(G)>2$, with three exceptional small graphs. This answers the question of Babai for $d=4$ in the class of~claw-free graphs.



2019 ◽  
Vol 53 (1 (248)) ◽  
pp. 3-12
Author(s):  
A.B. Ghazaryan

Given a proper edge coloring $ \phi $ of a graph $ G $, we define the palette $ S_G (\nu, \phi) $ of a vertex $ \nu \mathclose{\in} V(G) $ as the set of all colors appearing on edges incident with $ \nu $. The palette index $ \check{s} (G) $ of $ G $ is the minimum number of distinct palettes occurring in a proper edge coloring of $ G $. In this paper we give an upper bound on the palette index of a graph G in terms of cyclomatic number $ cyc(G) $ of $ G $ and maximum degree $ \Delta (G) $ of $ G $. We also give a sharp upper bound for the palette index of unicycle and bicycle graphs.



10.37236/9 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
A. Aflaki ◽  
S. Akbari ◽  
K.J. Edwards ◽  
D.S. Eskandani ◽  
M. Jamaali ◽  
...  

Let $G$ be a simple graph and $\Delta(G)$ denote the maximum degree of $G$. A harmonious colouring of $G$ is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number $h(G)$ is the least number of colours in such a colouring. In this paper it is shown that if $T$ is a tree of order $n$ and $\Delta(T)\geq\frac{n}{2}$, then there exists a harmonious colouring of $T$ with $\Delta(T)+1$ colours such that every colour is used at most twice. Thus $h(T)=\Delta(T)+1$. Moreover, we prove that if $T$ is a tree of order $n$ and $\Delta(T) \le \Big\lceil\frac{n}{2}\Big\rceil$, then there exists a harmonious colouring of $T$ with $\Big\lceil \frac{n}{2}\Big \rceil +1$ colours such that every colour is used at most twice. Thus $h(T)\leq \Big\lceil \frac{n}{2} \Big\rceil +1$.



Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Pat Morin ◽  
Bartosz Walczak ◽  
David R. Wood

Abstract A (not necessarily proper) vertex colouring of a graph has clustering c if every monochromatic component has at most c vertices. We prove that planar graphs with maximum degree $\Delta$ are 3-colourable with clustering $O(\Delta^2)$ . The previous best bound was $O(\Delta^{37})$ . This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree $\Delta$ that exclude a fixed minor are 3-colourable with clustering $O(\Delta^5)$ . The best previous bound for this result was exponential in $\Delta$ .



10.37236/632 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Landon Rabern

We prove that if $G$ is the line graph of a multigraph, then the chromatic number $\chi(G)$ of $G$ is at most $\max\left\{\omega(G), \frac{7\Delta(G) + 10}{8}\right\}$ where $\omega(G)$ and $\Delta(G)$ are the clique number and the maximum degree of $G$, respectively. Thus Brooks' Theorem holds for line graphs of multigraphs in much stronger form. Using similar methods we then prove that if $G$ is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 9$, then $G$ contains a clique on $\Delta(G)$ vertices. Thus the Borodin-Kostochka Conjecture holds for line graphs of multigraphs.



10.37236/7353 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jinko Kanno ◽  
Songling Shan

Let $G$ be a simple graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and chromatic index of $G$, respectively. Vizing proved that $\chi'(G)=\Delta(G)$ or $\chi'(G)=\Delta(G)+1$. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta(G)+1$ and $\chi'(H)<\chi'(G)$ for every proper subgraph $H$ of $G$. In 1968, Vizing conjectured that if $G$ is a $\Delta$-critical graph, then  $G$ has a 2-factor. Let $G$ be an $n$-vertex $\Delta$-critical graph. It was proved that if $\Delta(G)\ge n/2$, then $G$ has a 2-factor; and that if $\Delta(G)\ge 2n/3+13$, then $G$  has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough graph with at least three vertices has a 2-factor. We investigate the existence of a 2-factor in a $\Delta$-critical graph under "moderate" given toughness and  maximum degree conditions. In particular, we show that  if $G$ is an  $n$-vertex $\Delta$-critical graph with toughness at least 3/2 and with maximum degree at least $n/3$, then $G$ has a 2-factor. We also construct a family of graphs that have order $n$, maximum degree $n-1$, toughness at least $3/2$, but have no 2-factor. This implies that the $\Delta$-criticality in the result is needed. In addition, we develop new techniques in proving the existence of 2-factors in graphs.



Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1778
Author(s):  
Fangyun Tao ◽  
Ting Jin ◽  
Yiyou Tu

An equitable partition of a graph G is a partition of the vertex set of G such that the sizes of any two parts differ by at most one. The strong equitable vertexk-arboricity of G, denoted by vak≡(G), is the smallest integer t such that G can be equitably partitioned into t′ induced forests for every t′≥t, where the maximum degree of each induced forest is at most k. In this paper, we provide a general upper bound for va2≡(Kn,n). Exact values are obtained in some special cases.



2019 ◽  
Vol 29 (1) ◽  
pp. 113-127
Author(s):  
Rajko Nenadov ◽  
Nemanja Škorić

AbstractGiven graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$ , then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least $\delta (G) \ge (1 - \frac{1}{{{\chi _{{\rm{cr}}}}(H)}} + \gamma )np$ contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$ . In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.



Sign in / Sign up

Export Citation Format

Share Document