scholarly journals On the Strong Equitable Vertex 2-Arboricity of Complete Bipartite Graphs

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1778
Author(s):  
Fangyun Tao ◽  
Ting Jin ◽  
Yiyou Tu

An equitable partition of a graph G is a partition of the vertex set of G such that the sizes of any two parts differ by at most one. The strong equitable vertexk-arboricity of G, denoted by vak≡(G), is the smallest integer t such that G can be equitably partitioned into t′ induced forests for every t′≥t, where the maximum degree of each induced forest is at most k. In this paper, we provide a general upper bound for va2≡(Kn,n). Exact values are obtained in some special cases.

2020 ◽  
Vol 20 (02) ◽  
pp. 2050007
Author(s):  
P. C. LISNA ◽  
M. S. SUNITHA

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by φ(G), is the largest integer k such that G has a b-coloring with k colors. The b-chromatic sum of a graph G(V, E), denoted by φ′(G) is defined as the minimum of sum of colors c(v) of v for all v ∈ V in a b-coloring of G using φ(G) colors. The Mycielskian or Mycielski, μ(H) of a graph H with vertex set {v1, v2,…, vn} is a graph G obtained from H by adding a set of n + 1 new vertices {u, u1, u2, …, un} joining u to each vertex ui(1 ≤ i ≤ n) and joining ui to each neighbour of vi in H. In this paper, the b-chromatic sum of Mycielskian of cycles, complete graphs and complete bipartite graphs are discussed. Also, an application of b-coloring in image processing is discussed here.


10.37236/1521 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Paul J. Tanenbaum

Bound polysemy is the property of any pair $(G_1, G_2)$ of graphs on a shared vertex set $V$ for which there exists a partial order on $V$ such that any pair of vertices has an upper bound precisely when the pair is an edge in $G_1$ and a lower bound precisely when it is an edge in $G_2$. We examine several special cases and prove a characterization of the bound polysemic pairs that illuminates a connection with the squared graphs.


10.37236/8111 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Ron Aharoni ◽  
Eli Berger ◽  
Maria Chudnovsky ◽  
Frédéric Havet ◽  
Zilin Jiang

Given a system $(G_1, \ldots ,G_m)$ of graphs on the same vertex set $V$, a cooperative coloring is a choice of vertex sets $I_1, \ldots ,I_m$, such that $I_j$ is independent in $G_j$ and $\bigcup_{j=1}^{m}I_j = V$. For a class $\mathcal{G}$ of graphs, let $m_{\mathcal{G}}(d)$ be the minimal $m$ such that every $m$ graphs from $\mathcal{G}$ with maximum degree $d$ have a cooperative coloring. We prove that $\Omega(\log\log d) \le m_\mathcal{T}(d) \le O(\log d)$ and $\Omega(\log d)\le m_\mathcal{B}(d) \le O(d/\log d)$, where $\mathcal{T}$ is the class of trees and $\mathcal{B}$ is the class of bipartite graphs.


1999 ◽  
Vol 8 (6) ◽  
pp. 547-553 ◽  
Author(s):  
JOCHEN HARANT ◽  
ANJA PRUCHNEWSKI ◽  
MARGIT VOIGT

For a graph G on vertex set V = {1, …, n} let k = (k1, …, kn) be an integral vector such that 1 [les ] ki [les ] di for i ∈ V, where di is the degree of the vertex i in G. A k-dominating set is a set Dk ⊆ V such that every vertex i ∈ V[setmn ]Dk has at least ki neighbours in Dk. The k-domination number γk(G) of G is the cardinality of a smallest k-dominating set of G.For k1 = · · · = kn = 1, k-domination corresponds to the usual concept of domination. Our approach yields an improvement of an upper bound for the domination number found by N. Alon and J. H. Spencer.If ki = di for i = 1, …, n, then the notion of k-dominating set corresponds to the complement of an independent set. A function fk(p) is defined, and it will be proved that γk(G) = min fk(p), where the minimum is taken over the n-dimensional cube Cn = {p = (p1, …, pn) [mid ] pi ∈ ℝ, 0 [les ] pi [les ] 1, i = 1, …, n}. An [Oscr ](Δ22Δn-algorithm is presented, where Δ is the maximum degree of G, with INPUT: p ∈ Cn and OUTPUT: a k-dominating set Dk of G with [mid ]Dk[mid ][les ]fk(p).


2014 ◽  
Vol 12 (12) ◽  
Author(s):  
Teresa Haynes ◽  
Michael Henning ◽  
Lucas Merwe ◽  
Anders Yeo

AbstractA graph is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. Let G be a diameter-2-critical graph of order n. Murty and Simon conjectured that the number of edges in G is at most ⌊n 2/4⌋ and that the extremal graphs are the complete bipartite graphs K ⌊n/2⌋,⌊n/2⌉. Fan [Discrete Math. 67 (1987), 235–240] proved the conjecture for n ≤ 24 and for n = 26, while Füredi [J. Graph Theory 16 (1992), 81–98] proved the conjecture for n > n 0 where n 0 is a tower of 2’s of height about 1014. The conjecture has yet to be proven for other values of n. Let Δ denote the maximum degree of G. We prove the following maximum degree theorems for diameter-2-critical graphs. If Δ ≥ 0.7 n, then the Murty-Simon Conjecture is true. If n ≥ 2000 and Δ ≥ 0.6789 n, then the Murty-Simon Conjecture is true.


10.37236/4468 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Cristina Dalfó ◽  
Clemens Huemer ◽  
Julián Salas

The $(\Delta,D)$ (degree/diameter) problem consists of finding the largest possible number of vertices $n$ among all the graphs with maximum degree $\Delta$ and diameter $D$. We consider the $(\Delta,D)$ problem for maximal planar bipartite graphs, that is, simple planar graphs in which every face is a quadrangle. We obtain that for the $(\Delta,2)$ problem, the number of vertices is $n=\Delta+2$; and for the $(\Delta,3)$ problem, $n= 3\Delta-1$ if $\Delta$ is odd and $n= 3\Delta-2$ if $\Delta$ is even. Then, we prove that, for the general case of the $(\Delta,D)$ problem, an upper bound on $n$ is approximately $3(2D+1)(\Delta-2)^{\lfloor D/2\rfloor}$, and another one is $C(\Delta-2)^{\lfloor D/2\rfloor}$ if $\Delta\geq D$ and $C$ is a sufficiently large constant. Our upper bounds improve for our kind of graphs the one given by Fellows, Hell and Seyffarth for general planar graphs. We also give a lower bound on $n$ for maximal planar bipartite graphs, which is approximately $(\Delta-2)^{k}$ if $D=2k$, and $3(\Delta-3)^k$ if $D=2k+1$, for $\Delta$ and $D$ sufficiently large in both cases.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 268
Author(s):  
Zehui Shao ◽  
Doost Ali Mojdeh ◽  
Lutz Volkmann

For a graph G = ( V , E ) with vertex set V = V ( G ) and edge set E = E ( G ) , a Roman { 3 } -dominating function (R { 3 } -DF) is a function f : V ( G ) → { 0 , 1 , 2 , 3 } having the property that ∑ u ∈ N G ( v ) f ( u ) ≥ 3 , if f ( v ) = 0 , and ∑ u ∈ N G ( v ) f ( u ) ≥ 2 , if f ( v ) = 1 for any vertex v ∈ V ( G ) . The weight of a Roman { 3 } -dominating function f is the sum f ( V ) = ∑ v ∈ V ( G ) f ( v ) and the minimum weight of a Roman { 3 } -dominating function on G is the Roman { 3 } -domination number of G, denoted by γ { R 3 } ( G ) . Let G be a graph with no isolated vertices. The total Roman { 3 } -dominating function on G is an R { 3 } -DF f on G with the additional property that every vertex v ∈ V with f ( v ) ≠ 0 has a neighbor w with f ( w ) ≠ 0 . The minimum weight of a total Roman { 3 } -dominating function on G, is called the total Roman { 3 } -domination number denoted by γ t { R 3 } ( G ) . We initiate the study of total Roman { 3 } -domination and show its relationship to other domination parameters. We present an upper bound on the total Roman { 3 } -domination number of a connected graph G in terms of the order of G and characterize the graphs attaining this bound. Finally, we investigate the complexity of total Roman { 3 } -domination for bipartite graphs.


Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


Sign in / Sign up

Export Citation Format

Share Document