scholarly journals The Cycle Polynomial of a Permutation Group

10.37236/7299 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Peter J. Cameron ◽  
Jason Semeraro

The cycle polynomial of a finite permutation group $G$ is the generating function for the number of elements of $G$ with a given number of cycles:\[F_G(x) = \sum_{g\in G}x^{c(g)},\] where $c(g)$ is the number of cycles of $g$ on $\Omega$. In the first part of the paper, we develop basic properties of this polynomial, and give a number of examples. In the 1970s, Richard Stanley introduced the notion of reciprocity for pairs of combinatorial polynomials. We show that, in a considerable number of cases, there is a polynomial in the reciprocal relation to the cycle polynomial of $G$; this is the orbital chromatic polynomial of $\Gamma$ and $G$, where $\Gamma$ is a $G$-invariant graph, introduced by the first author, Jackson and Rudd. We pose the general problem of finding all such reciprocal pairs, and give a number of examples and characterisations: the latter include the cases where $\Gamma$ is a complete or null graph or a tree. The paper concludes with some comments on other polynomials associated with a permutation group.

2021 ◽  
pp. 1-40
Author(s):  
NICK GILL ◽  
BIANCA LODÀ ◽  
PABLO SPIGA

Abstract Let G be a permutation group on a set $\Omega $ of size t. We say that $\Lambda \subseteq \Omega $ is an independent set if its pointwise stabilizer is not equal to the pointwise stabilizer of any proper subset of $\Lambda $ . We define the height of G to be the maximum size of an independent set, and we denote this quantity $\textrm{H}(G)$ . In this paper, we study $\textrm{H}(G)$ for the case when G is primitive. Our main result asserts that either $\textrm{H}(G)< 9\log t$ or else G is in a particular well-studied family (the primitive large–base groups). An immediate corollary of this result is a characterization of primitive permutation groups with large relational complexity, the latter quantity being a statistic introduced by Cherlin in his study of the model theory of permutation groups. We also study $\textrm{I}(G)$ , the maximum length of an irredundant base of G, in which case we prove that if G is primitive, then either $\textrm{I}(G)<7\log t$ or else, again, G is in a particular family (which includes the primitive large–base groups as well as some others).


10.37236/81 ◽  
2009 ◽  
Vol 16 (2) ◽  
Author(s):  
William Y. C. Chen ◽  
Robert L. Tang ◽  
Alina F. Y. Zhao

Based on the notion of excedances of type $B$ introduced by Brenti, we give a type $B$ analogue of the derangement polynomials. The connection between the derangement polynomials and Eulerian polynomials naturally extends to the type $B$ case. Using this relation, we derive some basic properties of the derangement polynomials of type $B$, including the generating function formula, the Sturm sequence property, and the asymptotic normal distribution. We also show that the derangement polynomials are almost symmetric in the sense that the coefficients possess the spiral property.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Aimin Xu

We employ the generalized factorials to define a Stirling-type pair{s(n,k;α,β,r),S(n,k;α,β,r)}which unifies various Stirling-type numbers investigated by previous authors. We make use of the Newton interpolation and divided differences to obtain some basic properties of the generalized Stirling numbers including the recurrence relation, explicit expression, and generating function. The generalizations of the well-known Dobinski's formula are further investigated.


1976 ◽  
Vol 28 (6) ◽  
pp. 1311-1319 ◽  
Author(s):  
L. J. Cummings ◽  
R. W. Robinson

A formula is derived for the dimension of a symmetry class of tensors (over a finite dimensional complex vector space) associated with an arbitrary finite permutation group G and a linear character of x of G. This generalizes a result of the first author [3] which solved the problem in case G is a cyclic group.


1993 ◽  
Vol 113 (2) ◽  
pp. 267-280 ◽  
Author(s):  
G. E. Farr

AbstractThe Whitney quasi-rank generating function, which generalizes the Whitney rank generating function (or Tutte polynomial) of a graph, is introduced. It is found to include as special cases the weight enumerator of a (not necessarily linear) code, the percolation probability of an arbitrary clutter and a natural generalization of the chromatic polynomial. The crucial construction, essentially equivalent to one of Kung, is a means of associating, to any function, a rank-like function with suitable properties. Some of these properties, including connections with the Hadamard transform, are discussed.


2008 ◽  
Vol 06 (01) ◽  
pp. 23-36 ◽  
Author(s):  
WEI XU

Based on a large repertoire of chromosomal rearrangement operations, the genomic distance d between two genomes with χr and χb linear chromosomes, respectively, both containing the same (or orthologous) n genes or markers, is d = n + max (χr,χb) - c, where c is the number of cycles in the breakpoint graph of the two genomes. In this paper, we study the exact probability distribution of c. We derive the expectation and variance, and show that, in the limit, the expectation of d is [Formula: see text].


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mahid M. Mangontarum ◽  
Amila P. Macodi-Ringia ◽  
Normalah S. Abdulcarim

More properties for the translated Whitney numbers of the second kind such as horizontal generating function, explicit formula, and exponential generating function are proposed. Using the translated Whitney numbers of the second kind, we will define the translated Dowling polynomials and numbers. Basic properties such as exponential generating functions and explicit formula for the translated Dowling polynomials and numbers are obtained. Convexity, integral representation, and other interesting identities are also investigated and presented. We show that the properties obtained are generalizations of some of the known results involving the classical Bell polynomials and numbers. Lastly, we established the Hankel transform of the translated Dowling numbers.


Sign in / Sign up

Export Citation Format

Share Document