scholarly journals Defective and Clustered Graph Colouring

10.37236/7406 ◽  
2018 ◽  
Vol 1000 ◽  
Author(s):  
David R. Wood

Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has defect $d$ if each monochromatic component has maximum degree at most $d$. A colouring has clustering $c$ if each monochromatic component has at most $c$ vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdière parameter, graphs with given circumference, graphs excluding a given immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding $K_t$ as a minor, graphs excluding $K_{s,t}$ as a minor, and graphs excluding an arbitrary graph $H$ as a minor. Several open problems are discussed.

2008 ◽  
Vol 17 (4) ◽  
pp. 577-589 ◽  
Author(s):  
NATHAN LINIAL ◽  
JIŘÍ MATOUŠEK ◽  
OR SHEFFET ◽  
GÁBOR TARDOS

For a graph G and an integer t we let mcct(G) be the smallest m such that there exists a colouring of the vertices of G by t colours with no monochromatic connected subgraph having more than m vertices. Let be any non-trivial minor-closed family of graphs. We show that mcc2(G) = O(n2/3) for any n-vertex graph G ∈ . This bound is asymptotically optimal and it is attained for planar graphs. More generally, for every such , and every fixed t we show that mcct(G)=O(n2/(t+1)). On the other hand, we have examples of graphs G with no Kt+3 minor and with mcct(G)=Ω(n2/(2t−1)).It is also interesting to consider graphs of bounded degrees. Haxell, Szabó and Tardos proved mcc2(G) ≤ 20000 for every graph G of maximum degree 5. We show that there are n-vertex 7-regular graphs G with mcc2(G)=Ω(n), and more sharply, for every ϵ > 0 there exists cϵ > 0 and n-vertex graphs of maximum degree 7, average degree at most 6 + ϵ for all subgraphs, and with mcc2(G) ≥ cϵn. For 6-regular graphs it is known only that the maximum order of magnitude of mcc2 is between $\sqrt n$ and n.We also offer a Ramsey-theoretic perspective of the quantity mcct(G).


10.37236/6815 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
François Dross ◽  
Mickael Montassier ◽  
Alexandre Pinlou

An $({\cal I},{\cal F}_d)$-partition of a graph is a partition of the vertices of the graph into two sets $I$ and $F$, such that $I$ is an independent set and $F$ induces a forest of maximum degree at most $d$. We show that for all $M<3$ and $d \ge \frac{2}{3-M} - 2$, if a graph has maximum average degree less than $M$, then it has an $({\cal I},{\cal F}_d)$-partition. Additionally, we prove that for all $\frac{8}{3} \le M < 3$ and $d \ge \frac{1}{3-M}$, if a graph has maximum average degree less than $M$ then it has an $({\cal I},{\cal F}_d)$-partition. It follows that planar graphs with girth at least $7$ (resp. $8$, $10$) admit an $({\cal I},{\cal F}_5)$-partition (resp. $({\cal I},{\cal F}_3)$-partition, $({\cal I},{\cal F}_2)$-partition).


Author(s):  
V. I. Benediktovich

An algebraic parameter of a graph – a difference between its maximum degree and its spectral radius is considered in this paper. It is well known that this graph parameter is always nonnegative and represents some measure of deviation of a graph from its regularity. In the last two decades, many papers have been devoted to the study of this parameter. In particular, its lower bound depending on the graph order and diameter was obtained in 2007 by mathematician S. M. Cioabă. In 2017 when studying the upper and the lower bounds of this parameter, M. R. Oboudi made a conjecture that the lower bound of a given parameter for an arbitrary graph is the difference between a maximum degree and a spectral radius of a chain. This is very similar to the analogous statement for the spectral radius of an arbitrary graph whose lower boundary is also the spectral radius of a chain. In this paper, the above conjecture is confirmed for some graph classes.


10.37236/8816 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Hooman R. Dehkordi ◽  
Graham Farr

A graph $G$ is a non-separating planar graph if there is a drawing $D$ of $G$ on the plane such that (1) no two edges cross each other in $D$ and (2) for any cycle $C$ in $D$, any two vertices not in $C$ are on the same side of $C$ in $D$. Non-separating planar graphs are closed under taking minors and are a subclass of planar graphs and a superclass of outerplanar graphs. In this paper, we show that a graph is a non-separating planar graph if and only if it does not contain $K_1 \cup K_4$ or $K_1 \cup K_{2,3}$ or $K_{1,1,3}$ as a minor. Furthermore, we provide a structural characterisation of this class of graphs. More specifically, we show that any maximal non-separating planar graph is either an outerplanar graph or a wheel or it is a graph obtained from the disjoint union of two triangles by adding three vertex-disjoint paths between the two triangles. Lastly, to demonstrate an application of non-separating planar graphs, we use the characterisation of non-separating planar graphs to prove that there are maximal linkless graphs with $3n-3$ edges. Thus, maximal linkless graphs can have significantly fewer edges than maximum linkless graphs; Sachs exhibited linkless graphs with $n$ vertices and $4n-10$ edges (the maximum possible) in 1983.


2019 ◽  
Vol 28 (5) ◽  
pp. 791-810 ◽  
Author(s):  
Kevin Hendrey ◽  
David R. Wood

AbstractAn (improper) graph colouring hasdefect dif each monochromatic subgraph has maximum degree at mostd, and hasclustering cif each monochromatic component has at mostcvertices. This paper studies defective and clustered list-colourings for graphs with given maximum average degree. We prove that every graph with maximum average degree less than (2d+2)/(d+2)kisk-choosable with defectd. This improves upon a similar result by Havet and Sereni (J. Graph Theory, 2006). For clustered choosability of graphs with maximum average degreem, no (1-ɛ)mbound on the number of colours was previously known. The above result withd=1 solves this problem. It implies that every graph with maximum average degreemis$\lfloor{\frac{3}{4}m+1}\rfloor$-choosable with clustering 2. This extends a result of Kopreski and Yu (Discrete Math., 2017) to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degreemis$\lfloor{\frac{7}{10}m+1}\rfloor$-choosable with clustering 9, and is$\lfloor{\frac{2}{3}m+1}\rfloor$-choosable with clusteringO(m). As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth–moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Louis Esperet ◽  
Mickael Montassier ◽  
André Raspaud

International audience A proper vertex coloring of a non oriented graph $G=(V,E)$ is linear if the graph induced by the vertices of two color classes is a forest of paths. A graph $G$ is $L$-list colorable if for a given list assignment $L=\{L(v): v∈V\}$, there exists a proper coloring $c$ of $G$ such that $c(v)∈L(v)$ for all $v∈V$. If $G$ is $L$-list colorable for every list assignment with $|L(v)|≥k$ for all $v∈V$, then $G$ is said $k$-choosable. A graph is said to be lineary $k$-choosable if the coloring obtained is linear. In this paper, we investigate the linear choosability of graphs for some families of graphs: graphs with small maximum degree, with given maximum average degree, planar graphs... Moreover, we prove that determining whether a bipartite subcubic planar graph is lineary 3-colorable is an NP-complete problem.


Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Pat Morin ◽  
Bartosz Walczak ◽  
David R. Wood

Abstract A (not necessarily proper) vertex colouring of a graph has clustering c if every monochromatic component has at most c vertices. We prove that planar graphs with maximum degree $\Delta$ are 3-colourable with clustering $O(\Delta^2)$ . The previous best bound was $O(\Delta^{37})$ . This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree $\Delta$ that exclude a fixed minor are 3-colourable with clustering $O(\Delta^5)$ . The best previous bound for this result was exponential in $\Delta$ .


2018 ◽  
Vol 27 (5) ◽  
pp. 763-773
Author(s):  
AGELOS GEORGAKOPOULOS ◽  
STEPHAN WAGNER
Keyword(s):  

We construct minor-closed addable families of graphs that are subcritical and contain all planar graphs. This contradicts (one direction of) a well-known conjecture of Noy.


Sign in / Sign up

Export Citation Format

Share Document