scholarly journals Difference betwwen the maximum degree and the index of a graph

Author(s):  
V. I. Benediktovich

An algebraic parameter of a graph – a difference between its maximum degree and its spectral radius is considered in this paper. It is well known that this graph parameter is always nonnegative and represents some measure of deviation of a graph from its regularity. In the last two decades, many papers have been devoted to the study of this parameter. In particular, its lower bound depending on the graph order and diameter was obtained in 2007 by mathematician S. M. Cioabă. In 2017 when studying the upper and the lower bounds of this parameter, M. R. Oboudi made a conjecture that the lower bound of a given parameter for an arbitrary graph is the difference between a maximum degree and a spectral radius of a chain. This is very similar to the analogous statement for the spectral radius of an arbitrary graph whose lower boundary is also the spectral radius of a chain. In this paper, the above conjecture is confirmed for some graph classes.

Filomat ◽  
2021 ◽  
Vol 35 (4) ◽  
pp. 1289-1304
Author(s):  
Weige Xi

Let G be a strongly connected digraph with distance matrix D(G) and let Tr(G) be the diagonal matrix with vertex transmissions of G. For any real ? ? [0, 1], define the matrix D?(G) as D?(G) = ?Tr(G) + (1-?)D(G). The D? spectral radius of G is the spectral radius of D?(G). In this paper, we first give some upper and lower bounds for the D? spectral radius of G and characterize the extremal digraphs. Moreover, for digraphs that are not transmission regular, we give a lower bound on the difference between the maximum vertex transmission and the D? spectral radius. Finally, we obtain the D? eigenvalues of the join of certain regular digraphs.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


2000 ◽  
Vol 23 (8) ◽  
pp. 563-566 ◽  
Author(s):  
A. McD. Mercer ◽  
Peter R. Mercer

We present a short and simple proof of the well-known Cauchy interlace theorem. We use the theorem to improve some lower bound estimates for the spectral radius of a real symmetric matrix.


2019 ◽  
Vol 40 (10) ◽  
pp. 2778-2787
Author(s):  
MIKOLAJ FRACZYK

We prove a lower bound on the difference between the spectral radius of the Cayley graph of a group $G$ and the spectral radius of the Schreier graph $H\backslash G$ for any subgroup $H$. As an application, we extend Kesten’s theorem on spectral radii to uniformly recurrent subgroups and give a short proof that the result of Lyons and Peres on cycle density in Ramanujan graphs [Lyons and Peres. Cycle density in infinite Ramanujan graphs. Ann. Probab.43(6) (2015), 3337–3358, Theorem 1.2] holds on average. More precisely, we show that if ${\mathcal{G}}$ is an infinite deterministic Ramanujan graph then the time spent in short cycles by a random trajectory of length $n$ is $o(n)$.


10.37236/6644 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Liying Kang ◽  
Lele Liu ◽  
Erfang Shan

Let $\mathcal{A}(H)$ and $\mathcal{Q}(H)$ be the adjacency tensor and signless Laplacian tensor of an $r$-uniform hypergraph $H$. Denote by $\rho(H)$ and $\rho(\mathcal{Q}(H))$ the spectral radii of $\mathcal{A}(H)$ and $\mathcal{Q}(H)$, respectively. In this paper we present a  lower bound on $\rho(H)$ in terms of vertex degrees and we characterize the extremal hypergraphs attaining the bound, which solves a problem posed by Nikiforov [Analytic methods for uniform hypergraphs, Linear Algebra Appl. 457 (2014) 455–535]. Also, we prove a lower bound on $\rho(\mathcal{Q}(H))$ concerning degrees and give a characterization of the extremal hypergraphs attaining the bound.


Filomat ◽  
2016 ◽  
Vol 30 (8) ◽  
pp. 2091-2099
Author(s):  
Shuya Chiba ◽  
Yuji Nakano

In 2008, Alspach [The Wonderful Walecki Construction, Bull. Inst. Combin. Appl. 52 (2008) 7-20] defined the matching sequencibility of a graph G to be the largest integer k such that there exists a linear ordering of its edges so that every k consecutive edges in the linear ordering form a matching of G, which is denoted by ms(G). In this paper, we show that every graph G of size q and maximum degree ? satisfies 1/2?q/?+1? ? ms(G) ? ?q?1/??1? by using the edge-coloring of G, and we also improve this lower bound for some particular graphs. We further discuss the relationship between the matching sequencibility and a conjecture of Seymour about the existence of the kth power of a Hamilton cycle.


2020 ◽  
Vol 1 (4) ◽  
pp. 208-216
Author(s):  
Mochamad Suyudi ◽  
Asep K. Supriatna ◽  
Sukono Sukono

The maximum clique problem (MCP) is graph theory problem that demand complete subgraph with maximum cardinality (maximum clique) in arbitrary graph. Solving MCP usually use Branch and Bound (BnB) algorithm. In this paper, we will show how n + 1 color classes (where n is the difference between upper and lower bound) selected to form k-clique covering vertex set which later used for branching strategy can guarantee finding maximum clique.


10.37236/6015 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Tatiana Baginová Jajcayová ◽  
Slobodan Filipovski ◽  
Robert Jajcay

The well-known Moore bound $M(k,g)$ serves as a universal lower bound for the order of $k$-regular graphs of girth $g$. The excess $e$ of a $k$-regular graph $G$ of girth $g$ and order $n$ is the difference between its order $n$ and the corresponding Moore bound, $e=n - M(k,g) $. We find infinite families of parameters $(k,g)$, $g$ even, for which we show that the excess of any $k$-regular graph of girth $g$ is larger than $4$. This yields new improved lower bounds on the order of $k$-regular graphs of girth $g$ of smallest possible order; the so-called $(k,g)$-cages. We also show that the excess of the smallest $k$-regular graphs of girth $g$ can be arbitrarily large for a restricted family of $(k,g)$-graphs satisfying a very natural additional structural property.


10.37236/7406 ◽  
2018 ◽  
Vol 1000 ◽  
Author(s):  
David R. Wood

Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has defect $d$ if each monochromatic component has maximum degree at most $d$. A colouring has clustering $c$ if each monochromatic component has at most $c$ vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdière parameter, graphs with given circumference, graphs excluding a given immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding $K_t$ as a minor, graphs excluding $K_{s,t}$ as a minor, and graphs excluding an arbitrary graph $H$ as a minor. Several open problems are discussed.


10.37236/2646 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Yair Caro ◽  
Adriana Hansberg

Let $G = (V,E)$ be a graph and $k \ge 0$ an integer. A $k$-independent set $S \subseteq V$ is a set of vertices such that the maximum degree in the graph induced by $S$ is at most $k$. With $\alpha_k(G)$ we denote the maximum cardinality of a $k$-independent set of $G$. We prove that, for a graph $G$ on $n$ vertices and average degree $d$, $\alpha_k(G) \ge \frac{k+1}{\lceil d \rceil + k + 1} n$, improving the hitherto best general lower bound due to Caro and Tuza [Improved lower bounds on $k$-independence, J. Graph Theory 15 (1991), 99-107].


Sign in / Sign up

Export Citation Format

Share Document