scholarly journals A Cluster Expansion Formula ($A_n$ case)

10.37236/788 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Ralf Schiffler

We consider the Ptolemy cluster algebras, which are cluster algebras of finite type $A$ (with non-trivial coefficients) that have been described by Fomin and Zelevinsky using triangulations of a regular polygon. Given any seed $\Sigma$ in a Ptolemy cluster algebra, we present a formula for the expansion of an arbitrary cluster variable in terms of the cluster variables of the seed $\Sigma$. Our formula is given in a combinatorial way, using paths on a triangulation of the polygon that corresponds to the seed $\Sigma$.

10.37236/6464 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Kyungyong Lee ◽  
Li Li ◽  
Ba Nguyen

Lots of research focuses on the combinatorics behind various bases of cluster algebras. This paper studies the natural basis of a type $A$ cluster algebra, which consists of all cluster monomials. We introduce a new kind of combinatorial formula for the cluster monomials in terms of the so-called globally compatible collections. We give bijective proofs of these formulas by comparing with the well-known combinatorial models of the $T$-paths and of the perfect matchings in a snake diagram. For cluster variables of a type $A$ cluster algebra, we give a bijection that relates our new formula with the theta functions constructed by Gross, Hacking, Keel and Kontsevich.


2013 ◽  
Vol 23 (04) ◽  
pp. 745-762
Author(s):  
HÉLÈNE BARCELO ◽  
CHRISTOPHER SEVERS ◽  
JACOB A. WHITE

The associahedron is an object that has been well studied and has numerous applications, particularly in the theory of operads, the study of non-crossing partitions, lattice theory and more recently in the study of cluster algebras. We approach the associahedron from the point of view of discrete homotopy theory. We study the abelianization of the discrete fundamental group, and show that it is free abelian of rank [Formula: see text]. We also find a combinatorial description for a basis of this rank. We also introduce the exchange module of the type An cluster algebra, used to model the relations in the cluster algebra. We use the discrete fundamental group to the study of exchange module, and show that it is also free abelian of rank [Formula: see text].


2021 ◽  
Vol 181 (4) ◽  
pp. 313-337
Author(s):  
Claudia Pérez ◽  
Daniel Rivera

Skew-symmetrizable matrices play an essential role in the classification of cluster algebras. We prove that the problem of assigning a positive definite quasi-Cartan companion to a skew-symmetrizable matrix is in polynomial class P. We also present an algorithm to determine the finite type Δ ∈ {𝔸n; 𝔻n; 𝔹n; ℂn; 𝔼6; 𝔼7; 𝔼8; 𝔽4; 𝔾2} of a cluster algebra associated to the mutation-equivalence class of a connected skew-symmetrizable matrix B, if it has one.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Adam Kalman

International audience We study Newton polytopes of cluster variables in type $A_n$ cluster algebras, whose cluster and coefficient variables are indexed by the diagonals and boundary segments of a polygon. Our main results include an explicit description of the affine hull and facets of the Newton polytope of the Laurent expansion of any cluster variable, with respect to any cluster. In particular, we show that every Laurent monomial in a Laurent expansion of a type $A$ cluster variable corresponds to a vertex of the Newton polytope. We also describe the face lattice of each Newton polytope via an isomorphism with the lattice of elementary subgraphs of the associated snake graph. Nous étudions polytopes de Newton des variables amassées dans les algèbres amassées de type A, dont les variables sont indexés par les diagonales et les côtés d’un polygone. Nos principaux résultats comprennent une description explicite de l’enveloppe affine et facettes du polytope de Newton du développement de Laurent de toutes variables amassées. En particulier, nous montrons que tout monôme Laurent dans un développement de Laurent de variable amassée de type A correspond à un sommet du polytope de Newton. Nous décrivons aussi le treillis des facesde chaque polytope de Newton via un isomorphisme avec le treillis des sous-graphes élémentaires du “snake graph” qui est associé.


10.37236/8351 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Toshiya Yurikusa

We give a cluster expansion formula for cluster algebras with principal coefficients defined from triangulated surfaces in terms of maximal independent sets of angles. Our formula simplifies the cluster expansion formula given by Musiker, Schiffler and Williams in terms of perfect matchings of snake graphs. A key point of our proof is to give a bijection between maximal independent sets of angles in some triangulated polygon and perfect matchings of the corresponding snake graph. Moreover, they also correspond bijectively with perfect matchings of the corresponding bipartite graph and minimal cuts of the corresponding quiver with potential.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Emily Gunawan ◽  
Gregg Musiker

International audience We extend a $T$-path expansion formula for arcs on an unpunctured surface to the case of arcs on a once-punctured polygon and use this formula to give a combinatorial proof that cluster monomials form the atomic basis of a cluster algebra of type $D$. Nous généralisons une formule de développement en $T$-chemins pour les arcs sur une surface non-perforée aux arcs sur un polygone à une perforation. Nous utilisons cette formule pour donner une preuve combinatoire du fait que les monômes amassées constituent la base atomique d’une algèbre amassée de type $D$.


2018 ◽  
Vol 36 (2) ◽  
pp. 57-81
Author(s):  
Véronique Bazier-Matte ◽  
David Racicot-Desloges ◽  
Tanna Sánchez McMillan

Frieze patterns (in the sense of Conway and Coxeter) are related to cluster algebras of type A and to signed continuant polynomials. In view of studying certain classes of cluster algebras with coefficients, we extend the concept of signed continuant polynomial to define a new family of friezes, called c-friezes, which generalises frieze patterns. Having in mind the cluster algebras of finite type, we identify a necessary and sufficient condition for obtaining periodic c-friezes. Taking into account the Laurent phenomenon and the positivity conjecture, we present ways of generating c-friezes of integers and of positive integers. We also show some specific properties of c-friezes.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Gregg Musiker

International audience In this paper we give a graph theoretic combinatorial interpretation for the cluster variables that arise in most cluster algebras of finite type. In particular, we provide a family of graphs such that a weighted enumeration of their perfect matchings encodes the numerator of the associated Laurent polynomial while decompositions of the graphs correspond to the denominator. This complements recent work by Schiffler and Carroll-Price for a cluster expansion formula for the $A_n$ case while providing a novel interpretation for the $B_n$, $C_n$, and $D_n$ cases. Dans cet article nous donnons une interprétation combinatoire en termes de théorie des graphes pour les variables de clusters qui apparaissent dans la plupart des algèbres à clusters de type fini. En particulier, nous décrivons une famille de graphes tels qu'une énumération pondérée de leurs matchings parfaits encode le numérateur du polynôme de Laurent associé, tandis que les décompositions du graphe correspondent au dénominateur. Ceci complète les récents travaux de Schiffler et Carroll-Price qui donnent une formule pour le développement d'une variable de cluster dans le cas $A_n$, tout en fournissant une nouvelle interprétation dans les cas $B_n$, $C_n$ et $D_n$.


2016 ◽  
Vol Vol. 18 no. 3 (Combinatorics) ◽  
Author(s):  
Frédéric Chapoton

30 pages, 12 figures We study two different objects attached to an arbitrary quadrangulation of a regular polygon. The first one is a poset, closely related to the Stokes polytopes introduced by Baryshnikov. The second one is a set of some paths configurations inside the quadrangulation, satisfying some specific constraints. These objects provide a generalisation of the existing combinatorics of cluster algebras and nonnesting partitions of type A. On étudie deux objets attachés à une quadrangulation quelconque d'un polygone régulier. Le premier objet est un ensemble partiellement ordonné, fortement lié aux polytopes de Stokes introduits par Barysknikov. Le second est un ensemble de configurations de chemins dans la quadrangulation. Ces deux objets généralisent respectivement les aspects combinatoires des algèbres amassées et des partitions non-emboitées de type A.


Sign in / Sign up

Export Citation Format

Share Document