scholarly journals Cooperative Colorings of Trees and of Bipartite Graphs

10.37236/8111 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Ron Aharoni ◽  
Eli Berger ◽  
Maria Chudnovsky ◽  
Frédéric Havet ◽  
Zilin Jiang

Given a system $(G_1, \ldots ,G_m)$ of graphs on the same vertex set $V$, a cooperative coloring is a choice of vertex sets $I_1, \ldots ,I_m$, such that $I_j$ is independent in $G_j$ and $\bigcup_{j=1}^{m}I_j = V$. For a class $\mathcal{G}$ of graphs, let $m_{\mathcal{G}}(d)$ be the minimal $m$ such that every $m$ graphs from $\mathcal{G}$ with maximum degree $d$ have a cooperative coloring. We prove that $\Omega(\log\log d) \le m_\mathcal{T}(d) \le O(\log d)$ and $\Omega(\log d)\le m_\mathcal{B}(d) \le O(d/\log d)$, where $\mathcal{T}$ is the class of trees and $\mathcal{B}$ is the class of bipartite graphs.

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1778
Author(s):  
Fangyun Tao ◽  
Ting Jin ◽  
Yiyou Tu

An equitable partition of a graph G is a partition of the vertex set of G such that the sizes of any two parts differ by at most one. The strong equitable vertexk-arboricity of G, denoted by vak≡(G), is the smallest integer t such that G can be equitably partitioned into t′ induced forests for every t′≥t, where the maximum degree of each induced forest is at most k. In this paper, we provide a general upper bound for va2≡(Kn,n). Exact values are obtained in some special cases.


Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{Δ}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Marta Borowiecka-Olszewska ◽  
Ewa Drgas-Burchardt ◽  
Nahid Yelene Javier-Nol ◽  
Rita Zuazua

AbstractWe consider arc colourings of oriented graphs such that for each vertex the colours of all out-arcs incident with the vertex and the colours of all in-arcs incident with the vertex form intervals. We prove that the existence of such a colouring is an NP-complete problem. We give the solution of the problem for r-regular oriented graphs, transitive tournaments, oriented graphs with small maximum degree, oriented graphs with small order and some other classes of oriented graphs. We state the conjecture that for each graph there exists a consecutive colourable orientation and confirm the conjecture for complete graphs, 2-degenerate graphs, planar graphs with girth at least 8, and bipartite graphs with arboricity at most two that include all planar bipartite graphs. Additionally, we prove that the conjecture is true for all perfect consecutively colourable graphs and for all forbidden graphs for the class of perfect consecutively colourable graphs.


2011 ◽  
Vol 03 (03) ◽  
pp. 323-336 ◽  
Author(s):  
FANICA GAVRIL

A circle n-gon is the region between n or fewer non-crossing chords of a circle, no chord connecting the arcs between two other chords; the sides of a circle n-gon are either chords or arcs of the circle. A circle n-gon graph is the intersection graph of a family of circle n-gons in a circle. The family of circle trapezoid graphs is exactly the family of circle 2-gon graphs and the family of circle graphs is exactly the family of circle 1-gon graphs. The family of circle n-gon graphs contains the polygon-circle graphs which have an intersection representation by circle polygons, each polygon with at most n chords. We describe a polynomial time algorithm to find a minimum weight feedback vertex set, or equivalently, a maximum weight induced forest, in a circle n-gon graph with positive weights, when its intersection model by n-gon-interval-filaments is given.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 125
Author(s):  
Ismael González Yero

We consider in this work a new approach to study the simultaneous strong metric dimension of graphs families, while introducing the simultaneous version of the strong resolving graph. In concordance, we consider here connected graphs G whose vertex sets are represented as V ( G ) , and the following terminology. Two vertices u , v ∈ V ( G ) are strongly resolved by a vertex w ∈ V ( G ) , if there is a shortest w − v path containing u or a shortest w − u containing v. A set A of vertices of the graph G is said to be a strong metric generator for G if every two vertices of G are strongly resolved by some vertex of A. The smallest possible cardinality of any strong metric generator (SSMG) for the graph G is taken as the strong metric dimension of the graph G. Given a family F of graphs defined over a common vertex set V, a set S ⊂ V is an SSMG for F , if such set S is a strong metric generator for every graph G ∈ F . The simultaneous strong metric dimension of F is the minimum cardinality of any strong metric generator for F , and is denoted by Sd s ( F ) . The notion of simultaneous strong resolving graph of a graph family F is introduced in this work, and its usefulness in the study of Sd s ( F ) is described. That is, it is proved that computing Sd s ( F ) is equivalent to computing the vertex cover number of the simultaneous strong resolving graph of F . Several consequences (computational and combinatorial) of such relationship are then deduced. Among them, we remark for instance that we have proved the NP-hardness of computing the simultaneous strong metric dimension of families of paths, which is an improvement (with respect to the increasing difficulty of the problem) on the results known from the literature.


2019 ◽  
Vol 28 (5) ◽  
pp. 740-754
Author(s):  
Dong Yeap Kang ◽  
Sang-Il Oum

AbstractAs a strengthening of Hadwiger’s conjecture, Gerards and Seymour conjectured that every graph with no oddKtminor is (t− 1)-colourable. We prove two weaker variants of this conjecture. Firstly, we show that for eacht⩾ 2, every graph with no oddKtminor has a partition of its vertex set into 6t− 9 setsV1, …,V6t−9such that eachViinduces a subgraph of bounded maximum degree. Secondly, we prove that for eacht⩾ 2, every graph with no odd Kt minor has a partition of its vertex set into 10t−13 setsV1,…,V10t−13such that eachViinduces a subgraph with components of bounded size. The second theorem improves a result of Kawarabayashi (2008), which states that the vertex set can be partitioned into 496tsuch sets.


2009 ◽  
Vol 19 (02) ◽  
pp. 119-140 ◽  
Author(s):  
PROSENJIT BOSE ◽  
MICHIEL SMID ◽  
DAMING XU

Given a triangulation G, whose vertex set V is a set of n points in the plane, and given a real number γ with 0 < γ < π, we design an O(n)-time algorithm that constructs a connected subgraph G' of G with vertex set V whose maximum degree is at most 14 + ⌈2π/γ⌉. If G is the Delaunay triangulation of V, and γ = 2π/3, we show that G' is a t-spanner of V (for some constant t) with maximum degree at most 17, thereby improving the previously best known degree bound of 23. If G is a triangulation satisfying the diamond property, then for a specific range of values of γ dependent on the angle of the diamonds, we show that G' is a t-spanner of V (for some constant t) whose maximum degree is bounded by a constant dependent on γ. If G is the graph consisting of all Delaunay edges of length at most 1, and γ = π/3, we show that a modified version of the algorithm produces a plane subgraph G' of the unit-disk graph which is a t-spanner (for some constant t) of the unit-disk graph of V, whose maximum degree is at most 20, thereby improving the previously best known degree bound of 25.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650013
Author(s):  
L. Asgharsharghi ◽  
S. M. Sheikholeslami ◽  
L. Volkmann

A 2-rainbow dominating function (2RDF) of a graph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text], the condition [Formula: see text] is fulfilled. The weight of a 2RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a 2RDF of [Formula: see text]. The rainbow bondage number [Formula: see text] of a graph [Formula: see text] with maximum degree at least two is the minimum cardinality of all sets [Formula: see text] for which [Formula: see text]. Dehgardi, Sheikholeslami and Volkmann, [The [Formula: see text]-rainbow bondage number of a graph, Discrete Appl. Math. 174 (2014) 133–139] proved that the rainbow bondage number of a planar graph does not exceed 15. In this paper, we generalize their result for graphs which admit a [Formula: see text]-cell embedding on a surface with non-negative Euler characteristic.


Sign in / Sign up

Export Citation Format

Share Document