Multiple Models Direct Adaptive Decoupling Controller for a Stochastic System

2010 ◽  
Vol 36 (9) ◽  
pp. 1295-1304 ◽  
Author(s):  
Yi-Hui ZHENG ◽  
Xin WANG ◽  
Shao-Yuan LI ◽  
Jian-Guo JIANG
2019 ◽  
Vol 13 (4) ◽  
pp. 325-333
Author(s):  
Xu Liu ◽  
Xiaoqiang Di ◽  
Jinqing Li ◽  
Huamin Yang ◽  
Ligang Cong ◽  
...  

Background: User behavior models have been widely used to simulate attack behaviors in the security domain. We revised all patents related to response to attack behavior models. How to decide the protected target against multiple models of attack behaviors is studied. Methods: We utilize one perfect rational and three bounded rational behavior models to simulate attack behaviors in cloud computing, and then investigate cloud provider’s response based on Stackelberg game. The cloud provider plays the role of defender and it is assumed to be intelligent enough to predict the attack behavior model. Based on the prediction accuracy, two schemes are built in two situations. Results: If the defender can predict the attack behavior model accurately, a single-objective game model is built to find the optimal protection strategy; otherwise, a multi-objective game model is built to find the optimal protection strategy. Conclusion: The numerical results prove that the game theoretic model performs better in the corresponding situation.


1979 ◽  
Vol 44 (2) ◽  
pp. 328-339
Author(s):  
Vladimír Herles

Contradictious results published by different authors about the dynamics of systems with random parameters have been examined. Statistical analysis of the simple 1st order system proves that the random parameter can cause a systematic difference in the dynamic behavior that cannot be (in general) described by the usual constant-parameter model with the additive noise at the output.


Author(s):  
Stuart Glennan

This chapter explores how mechanisms and their constituents can be classified into kinds. It argues for a weakly realist account of natural kinds—one which suggests that classification into kinds is based upon real similarities between instances of those kinds, but which denies that kinds have essences or have some reality apart from their instances. I introduce a models-first account of kinds, which suggests that two things are of the same kind to the extent that they can be represented by the same model. Because target entities can be represented by multiple models, they will belong to multiple kinds. I illustrate the approach by showing how the entities and activities that make up mechanisms can be classified into kinds.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Athea Vichas ◽  
Amanda K. Riley ◽  
Naomi T. Nkinsi ◽  
Shriya Kamlapurkar ◽  
Phoebe C. R. Parrish ◽  
...  

AbstractCRISPR-based cancer dependency maps are accelerating advances in cancer precision medicine, but adequate functional maps are limited to the most common oncogenes. To identify opportunities for therapeutic intervention in other rarer subsets of cancer, we investigate the oncogene-specific dependencies conferred by the lung cancer oncogene, RIT1. Here, genome-wide CRISPR screening in KRAS, EGFR, and RIT1-mutant isogenic lung cancer cells identifies shared and unique vulnerabilities of each oncogene. Combining this genetic data with small-molecule sensitivity profiling, we identify a unique vulnerability of RIT1-mutant cells to loss of spindle assembly checkpoint regulators. Oncogenic RIT1M90I weakens the spindle assembly checkpoint and perturbs mitotic timing, resulting in sensitivity to Aurora A inhibition. In addition, we observe synergy between mutant RIT1 and activation of YAP1 in multiple models and frequent nuclear overexpression of YAP1 in human primary RIT1-mutant lung tumors. These results provide a genome-wide atlas of oncogenic RIT1 functional interactions and identify components of the RAS pathway, spindle assembly checkpoint, and Hippo/YAP1 network as candidate therapeutic targets in RIT1-mutant lung cancer.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Qingfeng Zhu ◽  
Yufeng Shi ◽  
Jiaqiang Wen ◽  
Hui Zhang

This paper is concerned with a type of time-symmetric stochastic system, namely the so-called forward–backward doubly stochastic differential equations (FBDSDEs), in which the forward equations are delayed doubly stochastic differential equations (SDEs) and the backward equations are anticipated backward doubly SDEs. Under some monotonicity assumptions, the existence and uniqueness of measurable solutions to FBDSDEs are obtained. The future development of many processes depends on both their current state and historical state, and these processes can usually be represented by stochastic differential systems with time delay. Therefore, a class of nonzero sum differential game for doubly stochastic systems with time delay is studied in this paper. A necessary condition for the open-loop Nash equilibrium point of the Pontriagin-type maximum principle are established, and a sufficient condition for the Nash equilibrium point is obtained. Furthermore, the above results are applied to the study of nonzero sum differential games for linear quadratic backward doubly stochastic systems with delay. Based on the solution of FBDSDEs, an explicit expression of Nash equilibrium points for such game problems is established.


Sign in / Sign up

Export Citation Format

Share Document