Evolutionary Tree Road Network Topology Building and the Application of Multi-Stops Path Optimization

2012 ◽  
Vol 35 (5) ◽  
pp. 964-971
Author(s):  
Hai-Tao WU ◽  
Gui-Jun ZHANG ◽  
Zhen HONG ◽  
Li YU
2018 ◽  
Vol 12 (1) ◽  
pp. 239-249
Author(s):  
Ting Lu ◽  
Dan Zhao ◽  
Yanhong Yin

Introduction: The expansion of road network and continuous increase of vehicle ownership challenge the performance of routine traffic control. It is necessary to make a balanced adjustment and control from the perspective of the road network to disperse the traffic flow on the entire road network. Methods: This paper develops a method to quantify the intersections’ importance at a global level based on the road network topology, which is the location of the intersection in the road network and the structural characteristics of the intersection decided by the traffic movement. The priority order in traffic signal coordination is the sorting results of intersection’s importance. The proposed method consists of two consecutive algorithms. Firstly, the graph connectivity of network is defined based on the shortest path distance and spatial connectivity between adjacent intersections. Secondly, The Importance Estimation Model (IEM) is built, which is the function of the importance indexes of current intersection and its neighboring intersections. A simulated case of a six by eight grid network was employed to evaluate the effectiveness of the proposed method in TRANSYT. Results and Conclusion: The results show that the Importance Estimation Model (IEM) minimized the measure of effectiveness compared with the schemes obtained by the volume sorting method, the saturation degree sorting method, and the method SMOO. It also created a higher frequency of small queues than the other methods.


2019 ◽  
Vol 11 (22) ◽  
pp. 6258
Author(s):  
Zeng ◽  
Qian ◽  
Ren ◽  
Xu ◽  
Wei

The unique valley geographical environment and the congestion-prone road landscape make valley city traffic jammed easily. In this paper, under the background of “open blocks”, two open patterns, which correspond to two different road landscapes ("ideal grid opening" and "open under realistic conditions"), are proposed. Taking Lanzhou city as an example, six basic statistical characteristics are used to compare and analyze the changes of road network topology in blocks to find out which open pattern is more suitable for valley cities. The results show that the pattern "open under realistic conditions" has a significant effect on the improvement of network performance and capacity. Specifically, breaking the "large blocks" and developing the small-scale blocks help to alleviate the traffic pressure. Besides, the opening of blocks located along river valley has a more positive effect on improving road network performance than the blocks sited in the inner area of cities.


2021 ◽  
Vol 10 (4) ◽  
pp. 248
Author(s):  
Nicolas Tempelmeier ◽  
Udo Feuerhake ◽  
Oskar Wage ◽  
Elena Demidova

The discovery of spatio-temporal dependencies within urban road networks that cause Recurrent Congestion (RC) patterns is crucial for numerous real-world applications, including urban planning and the scheduling of public transportation services. While most existing studies investigate temporal patterns of RC phenomena, the influence of the road network topology on RC is often overlooked. This article proposes the ST-Discovery algorithm, a novel unsupervised spatio-temporal data mining algorithm that facilitates effective data-driven discovery of RC dependencies induced by the road network topology using real-world traffic data. We factor out regularly reoccurring traffic phenomena, such as rush hours, mainly induced by the daytime, by modelling and systematically exploiting temporal traffic load outliers. We present an algorithm that first constructs connected subgraphs of the road network based on the traffic speed outliers. Second, the algorithm identifies pairs of subgraphs that indicate spatio-temporal correlations in their traffic load behaviour to identify topological dependencies within the road network. Finally, we rank the identified subgraph pairs based on the dependency score determined by our algorithm. Our experimental results demonstrate that ST-Discovery can effectively reveal topological dependencies in urban road networks.


Sign in / Sign up

Export Citation Format

Share Document