Study of Plume Behavior during High-Power Disk Laser Welding

2012 ◽  
Vol 201-202 ◽  
pp. 1076-1079
Author(s):  
De Yong You ◽  
Xiang Dong Gao

Laser welding process has been widely used in industrial manufacturing. The purpose of this paper is to explore the inter-relation between laser welding results and the laser-induced plume behavior. High-power disk laser welding of stainless steel type304 was performed at different welding speeds. Combing the high speed camera and ultraviolet sensing filter, the plume image sequences of laser welding process have been obtained. Plume features including plume volume and plume flowing direction have been extracted by using high-speed photography and image processing technology. The dynamic behavior of laser-induced plume was investigated. The results showed that the laser-induced plume feature, especially the plume volume, was closely related to laser welding process conditions.

2013 ◽  
Vol 709 ◽  
pp. 301-304 ◽  
Author(s):  
Gui Qian Liu ◽  
Xiang Dong Gao

During high-power laser welding process, the workpiece produces metal vapor because of the laser irradiation. The characteristics of metal vapor are related to the quality and stability of welding and the utilization of the laser power. An approach of analyzing the characteristics of metal vapor was researched during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW. A high-speed photography was used to capture metal vapor dynamic images. Metal vapor area, beam path, swing angle are calculated by image processing, which is the foundation for monitoring and control of welding quality in real time.


2012 ◽  
Vol 201-202 ◽  
pp. 91-94
Author(s):  
Yan Xi Zhang ◽  
Xiang Dong Gao

Configuration of a molten pool is related to the laser welding quality. Analyzing the configuration of a molten pool is important to monitor the laser welding process. This paper proposes a method of segmentation of a molten pool and its shadow during high power disk laser welding, consequently provides the groundwork for reconstruction of the molten pool and analysis of welding quality. Subsection linear stretching histogram equalization was applied to enhance the contrast of the original images firstly, and then edge detection was used to highlight the edges. After that we used the morphology filtering method to produce the segmentation mask, and then combined the mask with the original images to get the final segmentation results. Also, the proposed method was compared with other traditional methods. The experimental results showed that our method not only could give better segmentation results and process large quantities images automatically, but also overcame the less-segmentation problems of traditional methods.


2012 ◽  
Vol 201-202 ◽  
pp. 388-391
Author(s):  
Zi Qin Chen ◽  
Xiang Dong Gao

In a high-power fiber laser welding process, the thermal radiation of a weld pool contains plenty of information for welding quality, in which the pool width can reflect the welding stability. Thus, extracting the welding pool width of high-power fiber laser welding based on infrared thermal imaging is an important method for monitoring the weld seam quality. In this paper, we studied the 304 stainless steel welded by a 10kW high-power fiber laser continuously. A near-infrared high-speed sensing camera was used to capture the weld pool images. Image algorithms such as median filtering, gray scale stretching, cutting, dynamic threshold mathematical morphology were applied to extract the weld pool image edge, analyze and detect the weld pool width. Welding experimental results showed that the proposed methods could extract the weld pool width, which could reflect the stability status of high-power fiber laser welding process accurately.


2012 ◽  
Vol 532-533 ◽  
pp. 330-334
Author(s):  
Qian Wen ◽  
Xiang Dong Gao

Metal vapor plume and spatters are the important phenomena in the process of high power disk laser welding, and there exists a close relationship with the welding stability. The images of metal vapor plume and spatters which captured by a high speed camera during high power disk laser welding were analyzed in this experiment. Image processing techniques such as median filtering, Wiener filtering, gray level threshold and lightness transform were used to process the images so that the image characteristic parameters such as the area and number of spatters in an image, the average gray, mean value, variance and entropy of a spatter gray level image and the coordinate ratio of the centriod of plume and the welding point can be extracted. To reflect the actual welding results obviously by those characteristic parameters, K-L transform method was used to get a new set of characteristic parameters. Experimental results showed that this new set of characteristic parameters could reflect the actual welding effectively.


2004 ◽  
Vol 39 (19) ◽  
pp. 6117-6119 ◽  
Author(s):  
Young-Tae Yoo ◽  
Dong-Gyu Ahn ◽  
Kung-Bo Ro ◽  
Seong-Wook Song ◽  
Ho-Jun Shin ◽  
...  

2013 ◽  
Vol 40 (5) ◽  
pp. 0503001
Author(s):  
裴莹蕾 Pei Yinglei ◽  
单际国 Shan Jiguo ◽  
任家烈 Ren Jialie

Author(s):  
Tomotaka Hayashi ◽  
Yoji Inaba ◽  
Yosiyuki Matuhiro ◽  
Tateo Yamada ◽  
Takeo Kudo ◽  
...  

2012 ◽  
Vol 201-202 ◽  
pp. 1126-1129
Author(s):  
Qian Wen ◽  
Xiang Dong Gao

Metal vapor plume which induced during high power disc laser welding contains lots of information that related to the welding quality. Stainless steel 304 was taken as the experiment object for the high power disc laser welding experiment. A high-speed camera was used to capture the ultraviolet band and visible light band metal vapor plume images in the laser welding process. Image processing techniques such as median filtering, Wiener filtering, gray level threshold and image binarization were applied to get the images that only metal vapor plume was included. The ratio of the absolute value of coordinate difference between the centroid of plume and welding point was taken as the characteristic parameter. Welding experimental results and analysis of the changing of the ratio of the absolute value of coordinate difference between the centroid of plume and welding point confirmed that the welding quality could be monitored by the metal vapor plume during high power disc laser welding.


Sign in / Sign up

Export Citation Format

Share Document