scholarly journals Curative and Suppressive Activities of Essential Tea Tree Oil against Fungal Plant Pathogens

Author(s):  
Moshe Reuveni ◽  
Ethel Sanches ◽  
Marcel Barbier
Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 609 ◽  
Author(s):  
Moshe Reuveni ◽  
Ethel Sanches ◽  
Marcel Barbier

Timorex Gold based on the essential tea tree oil (TTO) derived from the Australian tea tree oil (Melaleuca alternifolia) plant has demonstrated high efficacy and a strong curative activity against black Sigatoka in banana and controlled it in stages 1, 2, 3, and 4 of disease development. Transmission electron microscope (TEM) examination of infected leaf sections treated with Timorex Gold revealed disruption of the fungal cell membrane and destruction of the fungal cell wall in disease development stages 4 and 5. Mineral oil and the fungicide difenoconazole, when applied alone, had no curative effect and did not disrupt the fungal cell wall or membrane, similar to the untreated control tissue. A single spray of Timorex Gold effectively controlled and suppressed powdery mildew in cucumber by causing the disappearance of 99% of established colonies recorded 1 or 2 days after the application and was effective for up to 8 days after application. Scanning electron microscope (SEM) examination of infected and Timorex Gold-treated leaves indicated strong shrinkage and disruption of fungal hyphae and conidial cells. The curative and suppressive modes of action of the Timorex Gold may explain its success in controlling both diseases.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1137
Author(s):  
Ronaldo J. D. Dalio ◽  
Heros J. Maximo ◽  
Rafaela Roma-Almeida ◽  
Janaína N. Barretta ◽  
Eric M. José ◽  
...  

The essential tea tree oil (TTO) derived from Melaleuca alternifolia plant is widely used as a biopesticide to protect crops from several plant-pathogens. Its activity raised queries regarding its ability to, not only act as a bio-fungicide or bio-bactericide, but also systemically inducing resistance in plants. This was examined by TTO application to banana plants challenged by Fusarium oxysporum f. sp. cubense (Foc, Race 1) causing Fusarium wilt and to tomato plants challenged by Xanthomonas campestris. Parameters to assess resistance induction included: disease development, enzymatic activity, defense genes expression correlated to systemic acquired resistance (SAR) and induced systemic resistance (ISR) and priming effect. Spraying TTO on field-grown banana plants infected with Foc and greenhouse tomato plants infected with Xanthomonas campestris led to resistance induction in both hosts. Several marker genes of salicylic acid, jasmonic acid and ethylene pathways were significantly up-regulated in parallel with symptoms reduction. For tomato plants, we have also recorded a priming effect following TTO treatment. In addition to fungicidal and bactericidal effect, TTO can be applied in more sustainable strategies to control diseases by enhancing the plants ability to defend themselves against pathogens and ultimately diminish chemical pesticides applications.


Pathology ◽  
2001 ◽  
Vol 33 (2) ◽  
pp. 211-215 ◽  
Author(s):  
John E. Gustafson ◽  
Sean D. Cox ◽  
Yoon C. Liew ◽  
S. Grant Wyllie ◽  
John R. Warmington

Planta Medica ◽  
2015 ◽  
Vol 81 (05) ◽  
Author(s):  
S Liang ◽  
Z Ali ◽  
M Wang ◽  
IA Khan
Keyword(s):  
Tea Tree ◽  

Author(s):  
Stephen Larbi-Koranteng ◽  
Richard Tuyee Awuah ◽  
Fredrick Kankam ◽  
Muntala Abdulai ◽  
Marian Dorcas Quain ◽  
...  

Aquaculture ◽  
2021 ◽  
pp. 736954
Author(s):  
Tamires R. dos Reis ◽  
Matheus D. Baldissera ◽  
Carine F. Souza ◽  
Bernardo Baldisserotto ◽  
Julia Corá Segat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document